Skip to main content
Log in

Linear algebra and numerical algorithms using dual numbers

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Dual number algebra is a powerful mathematical tool for the kinematic and dynamic analysis of spatial mechanisms. With the purpose of exploiting new applications, in this paper are presented the dual version of some classical linear algebra algorithms. These algorithms have been tested for the position analysis of the RCCC mechanism and computational improvements over existing methods obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clifford, W.K.: Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 4(64), 381–395 (1873)

    Google Scholar 

  2. Dimentberg, F.M.: The screw calculus and its applications. Tech. Rep. AD 680993, Clearinghouse for Federal and Scientific Technical Information, VA, USA (1968)

  3. Yang, A.T.: Displacement analysis of spatial five-link mechanisms using 3×3 matrices with dual elements. ASME J. Eng. Ind. 91(1), 152–157 (1969)

    Google Scholar 

  4. Yang, A.T.: Analysis of an offset unsymmetric gyroscope with oblique rotor using (3×3) matrices with dual-number elements. ASME J. Eng. Ind. 91(3), 535–542 (1969)

    Google Scholar 

  5. Keler, M.L.: Kinematics and statics including friction in single-loop mechanisms by screw calculus and dual vectors. ASME J. Eng. Ind. 95(2), 471–480 (1973)

    Google Scholar 

  6. Veldkamp, G.R.: On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics. Mech. Mach. Theory 11(2), 141–156 (1976)

    Article  Google Scholar 

  7. Study, E.: Geometrie der Dynamen. Teubner, Leipzig (1903)

    MATH  Google Scholar 

  8. Yang, A.T.: Calculus of screws. In: Basic Questions of Design Theory. North-Holland, Amsterdam (1974)

    Google Scholar 

  9. Cheng, H.H.: Computation of dual numbers in the extended finite dual plane. In: Proc. of the 1993 ASME Design Automation Conference, 19–22 September 1993, pp. 73–80 (1993)

  10. Cheng, H.H.: Numerical computations in the Ch programming language with applications in mechanisms and robotics. Parts I, II, III. In: Proc. of the Third National Conference on Mechanisms and Robotics, Cincinnati, OH, 8–10 November 1993

  11. Beyer, R.: Technische Raumkinematik. Springer, Berlin (1963)

    Google Scholar 

  12. Fischer, I.S.: Dual-Number Methods in Kinematics, Statics and Dynamics. CRC Press, Boca Raton (1999)

    Google Scholar 

  13. Denavit, J.: Displacement analysis of mechanisms on 2×2 matrices of dual numbers. VDI Ber. 29, 81–88 (1958)

    Google Scholar 

  14. Yang, A.T.: Application of quaternion algebra and dual numbers to the analysis of spatial mechanisms. PhD thesis, Columbia University (1963)

  15. Fischer, I.S.: Modeling of plane joint. ASME J. Mech. Des. 121, 383–386 (1999)

    Google Scholar 

  16. Fischer, I.S., Paul, R.N.: Kinematic displacement analysis of a double-cardan-joint driveline. ASME J. Mech. Des. 113, 263–271 (1991)

    Google Scholar 

  17. Hall, A.S., Root, R.S., Sandgren, E.: A dependable method for solving matrix loop equations for the general three-dimensional mechanism. ASME J. Eng. Ind. 99, 547–550 (1977)

    Google Scholar 

  18. Fischer, I.: Numerical analysis of displacements in a tracta coupling. Eng. Comput. 15, 334–344 (1999)

    Article  Google Scholar 

  19. Uicker, J.J., Denavit, J., Hartenberg, R.S.: An iterative method for the displacement analysis of spatial mechanisms. ASME J. Appl. Mech., 309–314 (1964)

  20. Yang, A.T.: Inertial force analysis of spatial mechanisms. ASME J. Eng. Ind. 93(1), 27–32 (1971)

    Google Scholar 

  21. Sugimoto, K., Duffy, J.: Application of linear algebra to screw systems. Mech. Mach. Theory 17(1), 73–83 (1982)

    Article  Google Scholar 

  22. Shoham, M., Brodsky, V.: Analysis of mechanisms by dual inertia operator. In: Computational Kinematics. Kluwer Academic, Netherlands (1993)

    Google Scholar 

  23. Yang, A.T., Freudenstein, F.: Application of dual number quaternions algebra to the analysis of spatial mechanisms. ASME J. Eng. Ind. 86, 300–308 (1964)

    MathSciNet  Google Scholar 

  24. Wohlhart, K.: Motor tensor calculus. In: Merlet, J.P., Ravani, B. (eds.) Computational Kinematics, pp. 93–102. Kluwer Academic, Dordrecht (1995)

    Google Scholar 

  25. Brand, L.: Vector and Tensor Analysis. Wiley, New York (1947)

    MATH  Google Scholar 

  26. Gonzáles-Palacios, M.A., Angeles, J.: Cam Synthesis. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  27. Gu, Y.-L., Luh, J.Y.S.: Dual-number transformations and its applications to robotics. IEEE J. Robot. Autom. RA-3, 615–623 (1987)

    Google Scholar 

  28. McCarthy, J.M.: Dual orthogonal matrices in manipulator kinematics. Int. J. Robot. Res. 5, 45–51 (1986)

    Article  Google Scholar 

  29. Duffy, J.: Analysis of Mechanisms and Robot Manipulators. Halstead, New York (1980)

    Google Scholar 

  30. Yaglom, I.M.: Complex Numbers in Geometry. Academic Press, New York (1968)

    Google Scholar 

  31. Pennock, G.R., Yang, A.T.: Application of dual-number matrices to the inverse kinematics problem of robot manipulators. ASME J. Mech. Transm. Autom. Des. 107, 201–208 (1985)

    Google Scholar 

  32. Pennock, G.R., Mattson, K.G.: Forward position problem of two puma-type robots manipulating a planar four-bar linkage payload. In: IEEE International Conference on Robotics and Automation, Minneapolis, MN, April 1996

  33. Cheng, H.H.: Programming with dual numbers and its applications in mechanisms design. Eng. Comput. 10(4), 212–229 (1994)

    Article  Google Scholar 

  34. Pennock, G.R., Yang, A.T.: Dynamic analysis of multi-rigid-body open-chain system. ASME J. Mech. Transm. Autom. Des. 105, 28–33 (1983)

    Google Scholar 

  35. Bagci, C.: Static force and torque analysis using 3×3 screw matrix, and transmission criteria for space mechanisms. ASME J. Eng. Ind. 93, 90–101 (1971)

    Google Scholar 

  36. Bagci, C.: Dynamic force and torque analysis for mechanisms using dual vectors and 3×3 screw matrix. ASME J. Eng. Ind. 94, 738–745 (1972)

    Google Scholar 

  37. Cheng, H.H., Thompson, S.: Dual iterative displacement analysis of spatial mechanisms using the Ch programming language. Mech. Mach. Theory 32(2), 193–207 (1997)

    Article  Google Scholar 

  38. Fischer, I.S., Chu, T.: Numerical analysis of displacements in multiloop mechanisms. Mech. Res. Commun. 28(2), 127–137 (2001)

    Article  MATH  Google Scholar 

  39. Fischer, I.S.: Velocity analysis of mechanisms with ball joints. Mech. Res. Commun. 30, 69–78 (2003)

    Article  MATH  Google Scholar 

  40. Fischer, I.S.: Numerical analysis of displacements in spatial mechanisms with ball joints. Mech. Mach. Theory 35, 1623–1640 (2000)

    Article  MATH  Google Scholar 

  41. Gonzáles-Palacios, M.A., Angeles, J., Ranjbaran, F.: The kinematic synthesis of serial manipulators with prescribed Jacobian. In: IEEE International Conference on Robotics and Automation, vol. I, pp. 450–455 (1993)

  42. Cheng, H.H., Thompson, S.: Dual polynomials and complex dual numbers for analysis of spatial mechanisms. In: Proceedings of the 1996 ASME 24th Mechanisms Conference, paper 96DETC-MECH-1221, ASME (1996)

  43. Fischer, I.S., Freudensetin, F.: Internal force and moment transmission in a cardan joint with manufacturing tolerances. ASME J. Mech. Transm. Autom. Des. 106, 301–311 (1984)

    Google Scholar 

  44. Chen, C.K., Freudenstein, F.: Dynamic analysis of a universal joint with manufacturing tolerances. ASME J. Mech. Transm. Autom. Des. 108, 524–532 (1985)

    Google Scholar 

  45. Pennestrì, E., Vita, L.: Mechanical efficiency analysis of a cardan joint with manufacturing tolerances. In: Proc. of the RAAD03 12th International Workshop on Robotics in Alpe-Adria-Danube Region, Cassino, Italy, paper 053 (2003)

  46. Pennestrì, E., Cavacece, M., Valentini, P.P., Vita, L.: Mechanical efficiency analysis of a cardan joint. In: Proc. of 2004 ASME Design Engineering Technical Conferences, Salt Lake City, Utah, paper DETC04/MECH-57317, ASME (2004)

  47. Cavacece, M., Stefanelli, R., Valentini, P.P., Vita, L.: A multibody dynamic model of a Cardan joint with experimental validation. In: Goicolea J.M., Cuadrado J.C., Garcia Orden J. (eds.), Proc. of Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, Spain (2005)

  48. McCarthy, J.M.: Geometric Design of Linkages. Springer, Berlin (2000)

    MATH  Google Scholar 

  49. Angeles, J.: The application of dual algebra to kinematic analysis. In: Angeles, J., Zakhariev, E. (eds.) Computational Methods in Mechanical Systems, pp. 3–32. Springer, Berlin (1991)

    Google Scholar 

  50. Wittenburg, J.: Dual quaternions in kinematics of spatial mechanisms. In: Haug, E.J. (ed.) Computer Aided Analysis and Optimization of Mechanical System Dynamics, pp. 129–145. Springer, Berlin (1984)

    Google Scholar 

  51. De Falco, D., Pennestrì, E.: The Udwadia–Kalaba formulation: a report on its numerical efficiency and on its teaching effectiveness. In: Proc. of the Multibody Dynamics 2005, ECCOMAS Thematic Conference (2005)

  52. De Falco, D., Pennestrì, E., Vita, L.: Esperienze numeriche sulla formulazione di Udwadia–Kalaba. In: Atti Congresso AIMETA (2005)

  53. Soni, A.H., Harrisberger, L.: Die Anwendung der 3×3 Schraubungs Matrix auf die kinematische und dynamische Analyze der raumlichen Getrieben. VDI Berichte, No. 127 (1968)

  54. Hsia, L.M., Yang, A.T.: On the principle of transference in three dimensional kinematics. ASME J. Mech. Des. 103, 652–656 (1981)

    Article  Google Scholar 

  55. Agrawal, S.K.: Multibody dynamics: A formulation using Kane’s method and dual vectors. ASME J. Mech. Des. 115, 833–838 (1993)

    Article  Google Scholar 

  56. Moon, Y.-M., Kota, S.: Automated synthesis of mechanisms using dual-vector algebra. Mech. Mach. Theory 37, 143–166 (2002)

    Article  MATH  Google Scholar 

  57. Azariadis, P., Aspragathos, N.: Computer graphics representation and transformation of geometric entities using dual unit vectors and line transformations. Comput. Graph. 25, 195–209 (2001)

    Article  Google Scholar 

  58. Teu, K., Kim, W.: Estimation of the axis of a screw motion from noisy data new method based on Plücker lines. J. Biomech. 39, 2857–2862 (2006)

    Article  Google Scholar 

  59. Potts, P.: A derivation of a minimal set of multilinear loop equations for spatial mechanisms. ASME J. Eng. Ind. 98, 1301–1305 (1976)

    Google Scholar 

  60. Ball, R.S.: Theory of Screws. Cambridge University Press, Cambridge (1900)

    Google Scholar 

  61. Rooney, J.: On the principle of transference. In: Proc. of the IV IFToMM Congress, New Castle Upon Tyne, UK, pp. 1089–1094 (1975)

  62. Beggs, J.S.: Advanced Mechanisms. Macmillan, New York (1966)

    Google Scholar 

  63. Uicker, J.J., Denavit, J., Hartenberg, R.S.: An iterative method for the displacement analysis of spatial mechanisms. ASME J. Appl. Mech. 34, 309–314 (1964)

    Google Scholar 

  64. Schaaf, J.A., Ravani, B.: Geometry continuity of ruled surfaces. Comput. Aided Geom. Des. 15, 289–310 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  65. Merlini, M., Morandini, M.: The helicoidal modeling in computational finite elasticity. Part I: Variational formulation. Int. J. Solids Struct. 41, 5351–5381 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  66. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  67. Fasse, E.: Some applications of screw theory to lumped parameter modeling of visco-elastically coupled rigid bodies. In: Proc. of a Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball (Ball 2000), University of Cambridge, Trinity College (2000). citeseer.ist.psu.edu/fasse00some.html

  68. Daniilidis, K.: Hand-eye calibration using dual quaternions. Int. J. Robot. Res. 18, 286–298 (1999)

    Article  Google Scholar 

  69. Pennestrì, E.: Cinematica teorica. In: Cheli, F., Pennestrì, E. (eds.) Cinematica e Dinamica dei Sistemi Multibody, pp. 21–24. Casa Editrice Ambrosiana, Milano (2006)

    Google Scholar 

  70. Perez, A., McCarthy, J.M.: Bennet’s linkage and the cylindroid. Mech. Mach. Theory 37, 1245–1260 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  71. Perez, A.: Analysis and design of Bennett linkages. Master thesis, University of California (1999)

  72. Marcolongo, R.: Meccanica Razionale. Hoepli, Milano (1953)

    Google Scholar 

  73. Liu, T., Lee, T.W.: Dynamics of an overconstrained shaft coupling. ASME J. Mech. Transm. Autom. Des. 108, 497–502 (1986)

    Google Scholar 

  74. Perez, A., McCarthy, J.M.: Dimensional synthesis of Bennet linkage. In: Proceedings of 2000 ASME Design Technical Engineering Conferences, paper DETC2000/Mech-14069, ASME (2000)

  75. Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Needham Hights (1989)

    Google Scholar 

  76. Trainelli, L., Croce, A.: A comprehensive view of rotation parametrization. 4th European Congress ECCOMAS 2004, Jyväskylä, Finland, 24–28 July 2004

  77. Wittenburg, J.: Duale quaternionen in der kinematik räumlicher getriebe. Eine anschauliche Darstellung, Archive of Appl. Mech. (Ingenieur Archiv) 51(1–2), 17–29 (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pennestrì.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennestrì, E., Stefanelli, R. Linear algebra and numerical algorithms using dual numbers. Multibody Syst Dyn 18, 323–344 (2007). https://doi.org/10.1007/s11044-007-9088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9088-9

Keywords

Navigation