Skip to main content
Log in

Undrained creep behavior of a compacted clay under low confining pressure

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

An experimental investigation is made for evaluating the long-term creep behavior of a compacted clay under low confining pressure (from 12 to 50 kPa). Specimens compacted at the natural dry density and natural water content were first subjected to consolidated undrained shear tests to determine the shear strength. Undrained triaxial creep tests were thereafter conducted to study the axial strain versus time relationships under different deviatoric stress levels which were determined referencing the shear strength. Mercury intrusion porosimetry tests were performed to track the evolution of the microstructure during the undrained creep. Testing results showed that (i) the diameter of the dominant pores within the clay increases under low confining pressure but decreases under higher confining pressure after undrained creep, (ii) all axial strain versus time relationships show attenuated or transitional characteristics and no creep rupture occurs, and (iii) the proportion of total progressive axial strain in the total axial strain increases with the increasing deviatoric stress level and decreasing confining pressure. Three approaches were used to predict the measured axial strain versus time relationships under low confining pressures. Good agreements have been achieved between the predictions and measurements obtained in this study, which confirms the validity of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Homoud, A.S., Khoury, H., Al-Omari, Y.A.: Mineralogical and engineering properties of problematic expansive clayey beds causing landslides. Bull. Int. Assoc. Eng. Geol. 54(1), 13–31 (1996)

    Article  Google Scholar 

  • Arulanandan, K., Shen, C.K., Young, R.B.: Undrained creep behaviour of a coastal organic silty clay. Geotechnique 21(4), 359–375 (1971)

    Article  Google Scholar 

  • ASTM: Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, D4767-95. American Society for Testing and Materials, West Conshohocken, PA (2010)

    Google Scholar 

  • ASTM: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, D854-14. American Society for Testing and Materials, West Conshohocken, PA (2014)

    Google Scholar 

  • ASTM: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, D4318-17e1 American Society for Testing and Materials, West Conshohocken, PA (2017a)

    Google Scholar 

  • ASTM: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, D6913/D6913M-17 American Society for Testing and Materials, West Conshohocken, PA (2017b)

    Google Scholar 

  • Augustesen, A., Liingaard, M., Lade, P.V.: Evaluation of time-dependent behavior of soils. Int. J. Geomech. 4(3), 137–156 (2004)

    Article  Google Scholar 

  • Bai, Y., Shan, R., Tong, X., Han, T., Dou, H.: Study on the effect of dynamic disturbance on creep behavior of frozen fractured red sandstone. Mech. Time-Depend. Mater. 26(2), 463–483 (2022)

    Article  Google Scholar 

  • Bjerrum, L.: Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Geotechnique 17(2), 83–118 (1967)

    Article  Google Scholar 

  • Campanella, R.G., Vaid, Y.P.: Triaxial and plane strain creep rupture of an undisturbed clay. Can. Geotech. J. 11(1), 1–10 (1974)

    Article  Google Scholar 

  • Cheng, C.M., Yin, J.H.: Strain-rate dependent stress–strain behavior of undisturbed Hong Kong marine deposits under oedometric and triaxial stress states. Mar. Georesour. Geotechnol. 23(1–2), 61–92 (2005)

    Article  Google Scholar 

  • Cuomo, S., Della Sala, M.: Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits. Eng. Geol. 162, 118–127 (2013)

    Article  Google Scholar 

  • Deng, H., Dai, G., Azadi, M.R., Hu, Y.: Drained creep test and creep model evaluation of coastal soft clay. Indian Geotechnical Journal 1(16) (2021)

  • Ding, L.Q., Han, Z., Zou, W.L., Wang, X.Q.: Characterizing hydro-mechanical behaviours of compacted subgrade soils considering effects of freeze-thaw cycles. Transp. Geotech. 24, 100392 (2020). https://doi.org/10.1016/j.trgeo.2020.100392

    Article  Google Scholar 

  • Gang, B., Jean-Louis, B., Marcelo, S., Mohsen, M.K.: Power law model to predict creep movement and creep failure. J. Geotech. Geoenviron. Eng. 145(9), 04019044 (2019). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002081

    Article  Google Scholar 

  • GBT: Specification of soil test, 50123. Industry Standard of the People’s Republic. China (2019)

  • Han, J., Yin, Z.Y., Dano, C., Hicher, P.Y.: Cyclic and creep combination effects on the long-term undrained behavior of overconsolidated clay. Acta Geotech. 16(4), 1–15 (2021)

    Article  Google Scholar 

  • Holzer, T.L., Höeg, K., Arulanandan, K.: Excess pore pressures during undrained clay creep. Can. Geotech. J. 10(1), 12–24 (1973)

    Article  Google Scholar 

  • Huang, R.Q., Li, W.L.: Formation, distribution and risk control of landslides in China. J. Rock Mech. Geotech. Eng. 3(2), 97–116 (2011)

    Article  Google Scholar 

  • Huang, R., Wu, L.Z.: Stability analysis of unsaturated expansive soil slope. Earth Sci. Front. 14(6), 129–133 (2007)

    Article  Google Scholar 

  • Khan, M.S., Hossain, S., Ahmed, A., Faysal, M.: Investigation of a shallow slope failure on expansive clay in Texas. Eng. Geol. 219, 118–129 (2017)

    Article  Google Scholar 

  • Klein, J., Jessberger, H.L.: Creep stress analysis of frozen soils under multiaxial states of stress. Eng. Geol. 13(1–4), 353–365 (1979)

    Article  Google Scholar 

  • Lancelot, L., Shahrour, I., Mahmoud, M.A.: Failure and dilatancy properties of sand at relatively low stresses. J. Eng. Mech. 132(12), 1396–1399 (2007)

    Article  Google Scholar 

  • Le, T.M., Fatahi, B., Khabbaz, H.: Viscous behaviour of soft clay and inducing factors. Geotech. Geolog. Eng. 30(5), 1069–1083 (2012)

    Article  Google Scholar 

  • Lenart, S., Koseki, J., Miyashita, Y., Sato, T.: Large-scale triaxial tests of dense gravel material at low confining pressures. Soil Found. 54(1), 45–55 (2014)

    Article  Google Scholar 

  • Li, D.W., Zhang, C.C., Ding, G.S.: Fractional derivative-based creep constitutive model of deep artificial frozen soil. Cold Reg. Sci. Technol. 170, 102942 (2019). https://doi.org/10.1016/j.coldregions.2019.102942

    Article  Google Scholar 

  • Liingaard, M., Augustesen, A., Lade, P.V.: Characterization of models for time-dependent behavior of soils. Int. J. Geomech. 4(3), 157–177 (2004)

    Article  Google Scholar 

  • Lin, P., Jiao, S., Garg, A., Ganesan, S., Yadav, J.S.: Local softening characteristic of soft clay subjected to dynamic loading under low confining pressure. Geotech. Geolog. Eng. 38(5), 5613–5622 (2020)

    Article  Google Scholar 

  • Liu, H.D., Chen, J.X., Han, W.X., Wu, Y., Li, D.D.: Centrifuge model tests and numerical simulations of the landslide evolution process. KSCE J. Civ. Eng. 26(6), 2588–2599 (2022)

    Article  Google Scholar 

  • Long, Z.L., Cheng, Y.Z., Yang, G.Y., Yang, D., Xu, Y.L.: Study on triaxial creep test and constitutive model of compacted red clay. Int. J. Civil Eng. 19(5), 517–531 (2021)

    Article  Google Scholar 

  • Sasanian, S., Newson, T.A.: Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents. Eng. Geol. 158, 15–22 (2013)

    Article  Google Scholar 

  • Sekiguchi, H.: Theory of undrained creep rupture of normally consolidated clay based on elasto-viscoplasticity. Soil Found. 24(1), 129–147 (1984)

    Article  Google Scholar 

  • Singh, A., Mitchell, J.K.: General stress-strain-time function for soils. ASCE Soil Mech. Found. Div. J. 94(1), 21–46 (1968)

    Article  Google Scholar 

  • Tafili, M., Fuentes, W., Triantafyllidis, T.: A comparative study of different model families for the constitutive simulation of viscous clays. Int. J. Numer. Anal. Methods Geomech. 44(5), 1–35 (2020)

    Article  Google Scholar 

  • Tavenas, F., Leroueil, S., Rochelle, P.L., Roy, M.: Creep behaviour of an undisturbed lightly overconsolidated clay. Can. Geotech. J. 15(3), 402–423 (2009)

    Article  Google Scholar 

  • Tian, W.M., Silva, A.J., Veyera, G.E., Sadd, M.H.: Drained creep of undisturbed cohesive marine sediments. Can. Geotech. J. 31, 841–855 (1994)

    Article  Google Scholar 

  • Tran, T.D., Cui, Y.J., Tang, A.M., Audiguier, M., Cojean, R.: Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay. J. Rock Mech. Geotech. Eng. 6(5), 399–404 (2014)

    Article  Google Scholar 

  • Walker, L.K.: Undrained creep in a sensitive clay. Geotechnique 19(4), 515–529 (1969)

    Article  Google Scholar 

  • Wang, L.Y., Zhou, F.X.: Fractional derivative in the elastic-viscoplastic stress-strain state model describing anisotropic creep of soft clays. Mech. Time-Depend. Mater. 26(1), 133–147 (2022)

    Article  MathSciNet  Google Scholar 

  • Wang, L.Z., Yin, Z.Y.: Stress-dilatancy of natural soft clay under undrained creep condition. Int. J. Geomech. 15(5), A4014002 (2015). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000271

    Article  Google Scholar 

  • Wang, S.M., Zhan, Q.H., Wang, L., Guo, F., Pan, Y.C.: Unsaturated creep behaviors and creep model of slip-surface soil of a landslide in Three Gorges Reservoir area, China. Bull. Eng. Geol. Environ. 80(7), 5423–5435 (2021)

    Article  Google Scholar 

  • Wu, F., Liu, J.F., Wang, J.: An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ. Earth Sci. 73(11), 6965–6971 (2015)

    Article  Google Scholar 

  • Wu, L.Z., Luo, X.H., Li, S.H.: A new model of shear creep and its experimental verification. Mech. Time-Depend. Mater. 25(3), 429–446 (2021)

    Article  Google Scholar 

  • Xu, T., Qiang, X., Deng, M., Ma, T., Yang, T., Tang, C.A.: A numerical analysis of rock creep-induced slide: a case study from Jiweishan mountain, China. Environ. Earth Sci. 72(6), 2111–2128 (2014)

    Article  Google Scholar 

  • Xue, K.X., Wang, S.F., Hu, Y.X., Li, M.D.: Creep behavior of red-clay under triaxial compression condition. Front. Earth Sci. 7, 345 (2020). https://doi.org/10.3389/feart.2019.00345

    Article  Google Scholar 

  • Yang, S.Q., Jing, H.W., Cheng, L.: Influences of pore pressure on short-term and creep mechanical behavior of red sandstone. Eng. Geol. 179, 10–23 (2014)

    Article  Google Scholar 

  • Yang, X.R., Jiang, A.N., Zhang, F.R.: Research on creep characteristics and variable parameter-based creep damage constitutive model of gneiss subjected to freeze-thaw cycles. Environ. Earth Sci. 80(1), 1–16 (2021)

    Article  Google Scholar 

  • Yin, J.H., Graham, J.: Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress-strain behaviour of clays. Can. Geotech. J. 31(1), 42–52 (1994)

    Article  Google Scholar 

  • Yin, Z.Z., Wei, J., Yuan, J.P., Cao, X.S.: Mechanism of slope slide of expansive soil and reinforcement for the slope. J. Hydraul. Eng. 41(1), 1–6 (2010)

    Google Scholar 

  • Zhang, L., Zhou, H.W., Wang, X.Y., Wang, L., Deng, T.F.: A triaxial creep model for deep coal considering temperature effect based on fractional derivative. Acta Geotech. 17(5), 1739–1751 (2022)

    Article  Google Scholar 

  • Zhang, S., Feng, Z.: A thermo-elasto-viscoplastic model for soft sedimentary rock. Soil Found. 49(4), 583–595 (2009)

    Article  Google Scholar 

  • Zhao, G.T., Zou, W.L., Han, Z., Wang, D.X., Wang, X.Q.: Evolution of soil-water and shrinkage characteristics of an expansive clay during freeze-thaw and drying-wetting cycles. Cold Reg. Sci. Technol. 186, 103275 (2021). https://doi.org/10.1016/j.coldregions.2021.103275

    Article  Google Scholar 

  • Zheng, J.L., Zhang, R., Yang, H.P.: Highway subgrade construction in expansive soil areas. J. Mater. Civ. Eng. 21(4), 154–162 (2009)

    Article  Google Scholar 

  • Zhu, J.G., Yin, J.H.: Drained creep behaviour of soft Hong Kong marine deposits. Geotechnique 51(5), 471–474 (2001)

    Article  Google Scholar 

  • Zhu, J.G., Yin, J.H., Luk, S.T.: Time-dependent stress-strain behavior of soft Hong Kong marine deposits. Geotech. Test. J. 22(2), 112–120 (1999)

    Google Scholar 

  • Zou, W.L., Ding, L.Q., Han, Z., Wang, X.Q.: Effects of freeze-thaw cycles on the moisture sensitivity of a compacted clay. Eng. Geol. 278, 105832 (2020). https://doi.org/10.1016/j.enggeo.2020.105832

    Article  Google Scholar 

  • Zou, W.L., Han, Z., Zhao, G.T., Fan, K.W., Vanapalli, S.K., Wang, X.Q.: Effects of cyclic freezing and thawing on the shear behaviors of an expansive soil under a wide range of stress levels. Environ. Earth Sci. 81(3), 1–14 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding received from the National Natural Science Foundation of China (Grant Nos 51979206, 51779191, 51809199).

Author information

Authors and Affiliations

Authors

Contributions

Qiu-yang Pei: Conceptualization, Supervision, Methodology, Project administration, Funding acquisition, Writing-original draft. Wei-lie Zou: Project administration, Funding acquisition, Writing-review & editing. Zhong Han: Methodology, Project administration, Funding acquisition. Xie-qun Wang: Methodology, Formal analysis, Modelling, Validation. Ke-wei Fan: Project administration, Methodology, Supervision, Writing-review & editing.

Corresponding authors

Correspondence to Wei-lie Zou, Zhong Han or Ke-wei Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Qy., Zou, Wl., Han, Z. et al. Undrained creep behavior of a compacted clay under low confining pressure. Mech Time-Depend Mater 27, 629–649 (2023). https://doi.org/10.1007/s11043-022-09582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-022-09582-9

Keywords

Navigation