Skip to main content
Log in

Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction (\(\mathit{Vf}\)) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of \(\mathit{Vf}\) were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Beremin, F.M.: Elastoplastic calculation of circumferentially notched specimens using the finite element method. J. Mech. 4(3), 307–325 (1980)

    Google Scholar 

  • Besson, J., Foerch, R.: Large scale object-oriented finite element code design. Comput. Methods Appl. Mech. Eng. 142, 165–187 (1997)

    Article  MATH  Google Scholar 

  • Besson, J., Guillemer-Neel, C.: An extension of the Green and Gurson models to kinematic hardening. Mech. Mater. 35, 1–18 (2003)

    Article  Google Scholar 

  • Besson, J.: Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms. Int. J. Plast. 25, 2204–2221 (2009)

    Article  Google Scholar 

  • Boisot, G., Laiarinandrasana, L., Besson, J., Fond, C., Hochstetter, G.: Experimental investigations and modeling of volume change induced by void growth in polyamide 11. Int. J. Solids Struct. 48, 2642–2654 (2011)

    Article  Google Scholar 

  • Bridgman, P.: The stress distribution at the neck of a tension specimen. Trans. Am. Soc. Mech. Eng. 32, 553–574 (1944)

    Google Scholar 

  • Cao, T.S., Mazière, M., Danas, K., Besson, J.: A model for ductile damage prediction at low stress triaxialities incorporating void shape change and void rotation. Int. J. Solids Struct. 63, 240–263 (2015)

    Article  Google Scholar 

  • Cayzac, C., Saï, K., Laiarinandrasana, L.: Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model. Int. J. Plast. 51, 47–64 (2013)

    Article  Google Scholar 

  • Challier, M., Besson, J., Laiarinandrasana, L., Piques, R.: Damaged and fracture of polyvinylidene fluoride (PVDF) at 20 °C: experiments and modelling. Eng. Fract. Mech. 73, 79–90 (2006)

    Article  Google Scholar 

  • Cheng, Y., Laiarinandrasana, L., Helfen, L., Proudhon, H., Klinkova, O., Baumbach, T., Morgeneyer, T.F.: 3D damage micromechanisms in polyamide 6 ahead of a severe notch studied by in situ synchrotron laminography. Macromol. Chem. Phys. 217, 701–715 (2016)

    Article  Google Scholar 

  • Cloetens, P., Pateyron-Salome, M., Buffiere, J.Y., Peix, G., Baruchel, J., Peyrin, F., Schlenker, M.: Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J. Appl. Phys. 81, 5878–5886 (1997)

    Article  Google Scholar 

  • Feret, L.: La grosseur des grains de matières pulvérulentes. Premières communications de la nouvelle Association Internationale pour l’essai des matériaux. groupe D, pp. 428–436 (1930)

  • Gologanu, M., Leblond, J.B., Devaux, J.: Approximate models for ductile metals containing spherical voids—case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41, 1723–1754 (1993)

    Article  MATH  Google Scholar 

  • Gologanu, M., Leblond, J.B., Devaux, J.: Theoretical models for void coalescence in porous ductile solids, II: coalescence “in columns”. Int. J. Solids Struct. 38, 5595–5604 (2001)

    Article  MATH  Google Scholar 

  • Gurson, A.: Continuum theory of ductile rupture by void nucleation and growth, part 1: yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  • Lafarge, M.: Modélisation couplée comportement-endommagement et critères de rupture dans le domaine de la transition du PVDF. PhD thesis, École des Mines de Paris (2007) (in French)

  • Laiarinandrasana, L., Morgeneyer, T., Proudhon, H., Regrain, C.: Damage of semicrystalline polyamide 6 assessed by 3D X-ray tomography: from microstructural evolution to constitutive modelling. J. Polym. Sci., Part B, Polym. Phys. 48, 1516–1525 (2010)

    Article  Google Scholar 

  • Laiarinandrasana, L., Morgeneyer, T., Proudhon, H., N’Guyen, F., Maire, E.: Effect of multiaxial stress state on morphology and spatial distribution of voids in deformed semicrystalline polymer assessed by X-ray tomography. Macromolecules 45, 4658–4668 (2012)

    Article  Google Scholar 

  • Laiarinandrasana, L., Klinkova, O., Nguyen, F., Proudhon, H., Morgeneyer, T.F., Ludwig, W.: Three dimensional quantification of anisotropic void evolution in deformed semi-crystalline polyamide 6. Int. J. Plast. 83, 19–36 (2016a)

    Article  Google Scholar 

  • Laiarinandrasana, L., Selles, N., Klinkova, F., Morgeneyer, T.F., Proudhon, H., Helfen, L.: Structural versus microstructural evolution of semi-crystalline polymers during necking under tension: influence of the skin-core effects, the relative humidity and the strain rate. Polym. Test. 55, 297–309 (2016b)

    Article  Google Scholar 

  • Pawlak, A., Galeski, A.: Cavitation during tensile deformation of polypropylene. Macromolecules 41, 2839–2851 (2008)

    Article  Google Scholar 

  • Pawlak, A., Galeski, A.: Cavitation and morphological changes in polypropylene deformed at elevated temperatures. J. Polym. Sci., Part B, Polym. Phys. 48, 1271–1280 (2010)

    Article  Google Scholar 

  • Ponçot, M., Addiego, F., Dahoun, A.: True intrinsic mechanical behaviour of semi-crystalline and amorphous polymers: influences of volume deformation and cavities shape. Int. J. Plast. 40, 126–139 (2013)

    Article  Google Scholar 

  • Poulet, P.A., Hochstetter, G., King, A., Proudhon, H., Joannès, S., Laiarinandrasana, L.: Observations by in-situ X-ray synchrotron computed tomography of the microstructural evolution of semi-crystalline polyamide 11 during deformation. Polym. Test. 56, 245–260 (2016)

    Article  Google Scholar 

  • Regrain, C., Laiarinandrasana, L., Toillon, S.: Experimental and numerical study of creep rupture behavior of PA6. Eng. Fract. Mech. 76, 2656–2665 (2009a)

    Article  Google Scholar 

  • Regrain, C., Laiarinandrasana, L., Toillon, S., Saï, K.: Multi-mechanism models for semi-crystalline polymer: constitutive relations and finite element implementation. Int. J. Plast. 25, 1253–1279 (2009b)

    Article  MATH  Google Scholar 

  • Saï, K., Laiarinandrasana, L., Naceur, I.B., Besson, J., Jeridi, J., Cailletaud, G.: Multi-mechanism damage-plasticity model for semi-crystalline polymer: creep damage of notched specimen of PA6. Mater. Sci. Eng. A 528, 1087–1093 (2011)

    Article  Google Scholar 

  • Selles, N., Nguyen, F., Morgeneyer, T.F., Proudhon, H., Ludwig, W., Laiarinandrasana, L.: Comparison of voiding mechanisms in semi-crystalline polyamide 6 during tensile and creep tests. Polym. Test. 49, 137–146 (2016a)

    Article  Google Scholar 

  • Selles, N., Saintier, N., Laiarinandrasana, L.: Voiding mechanisms in semi-crystalline polyamide 6 during creep tests assessed by damage based constitutive relationships and finite elements calculations. Int. J. Plast. 86, 112–127 (2016b)

    Article  Google Scholar 

  • Stoer, J.: Principles of sequential quadratic programming methods for solving nonlinear programs. In: Computational Mathematical Programming, pp. 165–207. Springer, Berlin (1985)

    Chapter  Google Scholar 

  • Tvergaard, V.: On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237–252 (1982)

    Google Scholar 

  • Tvergaard, V., Needleman, A.: Analysis of the cupcone fracture in a round tensile bar. Acta Mater. 32, 157–169 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

The authors should thank Anthony Bunsell for scientific and technical discussions and Nicolas Lenoir (UMS 3626 Placamat, CNRS Université de Bordeaux) for tomographic observations of the undeformed notch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Selles.

Appendix A

Appendix A

  • A finite strain approach using updated Lagrangian formulation is used to model large-strain deformation undergone by polymer materials. The polar decomposition of the deformation gradient tensor \({\boldsymbol{F}}\) is written as \({\boldsymbol{F}} = {\boldsymbol{R}} {\boldsymbol{U}}\). \({\boldsymbol{R}}\) and \({\boldsymbol{U}}\) describe a pure rotation and a pure stretch tensor, respectively. The rate of deformation \({\boldsymbol{L}}\) is defined as follows:

    $$ \boldsymbol{L} = \dot{\boldsymbol{F}} \boldsymbol{F}^{-1}. $$
    (1)

    The stretch rate \(\boldsymbol{D}\) and the rotation rate \({\boldsymbol{\varOmega}}\) are expressed using this definition of the rate of deformation:

    $$ {\boldsymbol{D}} = \frac{1}{2} \bigl( {\boldsymbol{L}} + {\boldsymbol{L}}^{\mathrm{T}} \bigr),\qquad \boldsymbol{\varOmega} = \frac{1}{ 2} \bigl( {\boldsymbol{L}} - {\boldsymbol{L}}^{\mathrm{T}} \bigr). $$
    (2)

    The stretch rate tensor is transported into a local rotated referential (\(\dot{{\boldsymbol{e}}} = {\boldsymbol{R}}^{\mathrm{T}} {\boldsymbol{D}} {\boldsymbol{R}}\)) and the large strain is obtained by integrating this stretch rate tensor \(\dot{{\boldsymbol{e}}}\). The material behaviour is based on Green–Naghdi transformation of the stress–strain problem into an “equivalent material referential”.

  • The total strain is decomposed into elastic (\({\boldsymbol{\varepsilon}}^{\mathrm{el}}\)) and visco-plastic (\({\boldsymbol{\varepsilon}}^{\mathrm{in}}\)) components:

    $$ {\boldsymbol{\varepsilon}} = {\boldsymbol{\varepsilon}}^{\mathrm{el}} + {\boldsymbol{\varepsilon}}^{\mathrm{in}}. $$
    (3)

    The elastic part is obtained by the Hooke’s law \({\boldsymbol{\sigma}} = {\boldsymbol{\varLambda}} {\boldsymbol{\varepsilon}}^{\mathrm{el}}\), where \({\boldsymbol{\sigma}}\) is the Cauchy stress tensor and \({\boldsymbol{\varLambda}}\) is the fourth-rank tensor of elastic moduli, constituted by the Young’s elastic modulus \(E \) and the Poisson ratio \(\nu\). The elastic behaviour is not split into crystalline and amorphous parts and is simplified by assuming unified elastic material coefficients (\(E \) and \(\nu \)).

  • The amorphous and crystalline phases are treated as two different phases with different behaviours by taking the crystallinity index into account. However, each phase is subjected to the same stress, namely the macroscopic stress. The amorphous and crystalline phases are distinguished thanks to the indices “a” and “c”, respectively:

    $$\begin{gathered} {\boldsymbol{\varepsilon}}^{\mathrm{in}} = ( 1- \chi ) { \boldsymbol{\varepsilon}}^{\mathrm{a}} + \chi {\boldsymbol{ \varepsilon}}^{\mathrm{c}}, \end{gathered}$$
    (4)
    $$\begin{gathered} {\boldsymbol{\sigma}} = {\boldsymbol{\sigma}}^{\mathrm{a}} = {\boldsymbol{\sigma}}^{\mathrm{c}}. \end{gathered}$$
    (5)
  • The evolution of the yield function during the deformation is modelled through isotropic hardening. The hardening parameters are denoted: \(R_{0\mathrm{a}}\), \(R_{0\mathrm{c}}\), \(Q_{\mathrm{a}}\), \(Q_{\mathrm{b}}\), \(b_{\mathrm{a}}\), and \(b_{\mathrm{c}}\). Then

    $$\begin{aligned} \begin{gathered} f^{\mathrm{a}} =J \bigl( {\boldsymbol{ \sigma}}^{\mathrm{a}} \bigr) - b_{\mathrm{a}} Q_{\mathrm{a}} r^{\mathrm{a}} - R_{0\mathrm{a}}, \\ f^{\mathrm{c}} =J \bigl( {\boldsymbol{\sigma}}^{\mathrm{c}} \bigr) - b_{\mathrm{c}} Q_{\mathrm{c}} r^{\mathrm{c}} - R_{0\mathrm{c}}. \end{gathered} \end{aligned}$$
    (6)

    The plastic behaviour is represented by the initial size of the yield surfaces (\(R_{0\mathrm{a}}\) and \(R_{0\mathrm{c}}\)) and by the isotropic hardening parameters linked to the amorphous and crystalline phases, respectively (\(Q_{\mathrm{a}}\), \(b_{\mathrm{a}}\) and \(Q_{\mathrm{c}}\), \(b_{\mathrm{c}}\)). \(R^{\mathrm{a}}\) and \(R^{\mathrm{c}}\) denote the size change in elastic domain related to each yield surface and are defined thanks to the internal variables \(r^{\mathrm{a}}\) and \(r^{\mathrm{c}}\) as follows:

    $$ R^{\mathrm{a}} = b_{\mathrm{a}} Q_{\mathrm{a}} r^{\mathrm{a}}\quad \mbox{and}\quad R^{\mathrm{c}} = b_{\mathrm{c}} Q_{\mathrm{c}} r^{\mathrm{c}}. $$
    (7)
  • The visco-plastic behaviour is taken into account through two Norton potentials. The visco-plastic parameters of the Norton power law functions are denoted \(K_{\mathrm{a}}\), \(K_{\mathrm{c}}\), \(n_{\mathrm{a}}\), \(n_{\mathrm{c}}\), and the visco-plastic multipliers \(\dot{\lambda}\) are the driving forces for the evolution laws:

    $$\begin{gathered} \begin{gathered} \dot{{\boldsymbol{\varepsilon}}}^{\mathrm{a}} = \dot{\lambda}^{\mathrm{a}} \frac{\partial f^{\mathrm{a}}}{\partial {\boldsymbol{\sigma}}^{\mathrm{a}}} = \dot{\lambda}^{\mathrm{a}} {\boldsymbol{n}}^{\mathrm{a}},\qquad \dot{r}^{\mathrm{a}} = \dot{ \lambda}^{\mathrm{a}} \bigl( 1- b_{\mathrm{a}} r^{\mathrm{a}} \bigr), \\ \dot{{\boldsymbol{\varepsilon}}}^{\mathrm{c}} = \dot{ \lambda}^{\mathrm{c}} \frac{\partial f^{\mathrm{c}}}{\partial {\boldsymbol{\sigma}}^{\mathrm{c}}} = \dot{\lambda}^{\mathrm{c}} { \boldsymbol{n}}^{\mathrm{c}},\qquad \dot{r}^{\mathrm{c}} = \dot{ \lambda}^{\mathrm{c}} \bigl( 1- b_{\mathrm{c}} r^{\mathrm{c}} \bigr), \end{gathered} \end{gathered}$$
    (8)
    $$\begin{gathered} \dot{\lambda}^{\mathrm{a}} = \bigl\langle f^{\mathrm{a}} / K^{\mathrm{a}} \bigr\rangle ^{n_{\mathrm{a}}},\qquad \dot{\lambda}^{\mathrm{c}} = \bigl\langle f^{\mathrm{c}} / K^{\mathrm{c}} \bigr\rangle ^{n_{\mathrm{c}}}. \end{gathered}$$
    (9)

    This multi-mechanisms model is coupled to a modified Gurson–Tvergaard–Needleman (GTN) porous media model (Gurson 1977; Tvergaard 1982; Tvergaard and Needleman 1984), then extended by Besson and Guillemer-Neel (2003). The damage variable chosen is the void volume fraction (\(\mathit{Vf}\)), and the presence of voids within the material is taken into account through the definition of effective quantities. These effective quantities, for example, \(a_{*}\), can be defined for any stress tensor \({\boldsymbol{a}}\) and porosity level:

    $$ {\boldsymbol{a}}: \frac{\partial a_{*}}{\partial {\boldsymbol{a}}} = a_{*}. $$
    (10)
  • The effective scalar stresses \(\sigma_{*}^{\mathrm{a}}\) and \(\sigma_{*}^{\mathrm{c}}\) are calculated implicitly via the conditions:

    $$\begin{gathered} G \bigl( {\boldsymbol{\sigma}}^{\mathrm{a}}, p, \sigma_{*}^{\mathrm{a}} \bigr) = \frac{J( \sigma^{\mathrm{a}} )}{ ( \sigma_{*}^{\mathrm{a}} )^{2}} +2 q_{1}. V_{\mathrm{f}}. \cosh \biggl( q_{2} \frac{\sigma_{kk}^{\mathrm{a}}}{\sigma_{*}^{\mathrm{a}}} \biggr) -1- q_{1}^{2}. V_{\mathrm{f}}^{2} =0, \end{gathered}$$
    (11)
    $$\begin{gathered} G \bigl( {\boldsymbol{\sigma}}^{\mathrm{c}}, p, \sigma_{*}^{\mathrm{c}} \bigr) = \frac{J( \sigma^{\mathrm{c}} )}{ ( \sigma_{*}^{\mathrm{c}} )^{2}} +2 q_{1}. V_{\mathrm{f}}. \cosh \biggl( q_{2} \frac{\sigma_{kk}^{\mathrm{c}}}{\sigma_{*}^{\mathrm{c}}} \biggr) -1- q_{1}^{2}. V_{\mathrm{f}}^{2} =0. \end{gathered}$$
    (12)
  • The overall polymer is strengthened whilst the deformation increases due to the alignment of polymer chains. This phenomenon is frequently called rheo-hardening and is modelled here using two coefficients \(A_{\mathrm{h}}\) and \(B_{\mathrm{h}}\), following the work by Challier et al. (2006). The flow potentials for the two phases are then written in their effective forms as follows:

    $$\begin{gathered} \begin{gathered} f_{*}^{\mathrm{a}} = \sigma_{*}^{\mathrm{a}} - R^{\mathrm{a}} - R_{0\mathrm{a}} - R_{\mathrm{h}}, \\ f_{*}^{\mathrm{c}} = \sigma_{*}^{\mathrm{c}} - R^{\mathrm{c}} - R_{0\mathrm{c}} - R_{\mathrm{h}}, \\ R_{\mathrm{h}} = A_{\mathrm{h}} \exp \bigl( B_{\mathrm{h}} \lambda^{\mathrm{a}} \bigr). \end{gathered} \end{gathered}$$
    (13)

    The evolution laws of inelastic strain are finally written as

    $$\begin{gathered} \begin{gathered} \dot{{\boldsymbol{\varepsilon}}}^{\mathrm{a}} = ( 1- V_{\mathrm{f}} ) \dot{\lambda}^{\mathrm{a}} {\boldsymbol{n}}_{*}^{\mathrm{a}}, \quad {\boldsymbol{n}}_{*}^{\mathrm{a}} = \frac{\partial \sigma_{*}^{\mathrm{a}}}{ \partial {\boldsymbol{\sigma}}^{\mathrm{a}}}, \\ \dot{{\boldsymbol{\varepsilon}}}^{\mathrm{c}} = ( 1- V_{\mathrm{f}} ) \dot{\lambda}^{\mathrm{c}} {\boldsymbol{n}}_{*}^{\mathrm{c}}, \quad {\boldsymbol{n}}_{*}^{\mathrm{c}} = \frac{\partial \sigma_{*}^{\mathrm{c}}}{ \partial {\boldsymbol{\sigma}}^{\mathrm{c}}}. \end{gathered} \end{gathered}$$
    (14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selles, N., King, A., Proudhon, H. et al. Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling. Mech Time-Depend Mater 22, 351–371 (2018). https://doi.org/10.1007/s11043-017-9360-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-017-9360-1

Keywords

Navigation