Skip to main content
Log in

Time domain analysis of the weighted distributed order rheological model

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper presents the fundamental solution and relevant properties of the weighted distributed order rheological model in the time domain. Based on the construction of distributed order damper and the idea of distributed order element networks, this paper studies the weighted distributed order operator of the rheological model, a generalization of distributed order linear rheological model. The inverse Laplace transform on weighted distributed order operators of rheological model has been obtained by cutting the complex plane and computing the complex path integral along the Hankel path, which leads to the asymptotic property and boundary discussions. The relaxation response to weighted distributed order rheological model is analyzed, and it is closely related to many physical phenomena. A number of novel characteristics of weighted distributed order rheological model, such as power-law decay and intermediate phenomenon, have been discovered as well. And meanwhile several illustrated examples play important role in validating these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Since the residue of \(\frac{e^{st}}{\int _{a}^{b} s^{\alpha }\,{\mathrm{d}}\alpha +\lambda }\) equals zero at \(s=\infty \), the path integral of it along \(s\to \infty \) vanishes.

References

  • Adolfsson, K., Enelund, M., Olsson, P.: On the fractional order model of viscoelasticity. Mech. Time-Depend. Mater. 9(1), 15–34 (2005). doi:10.1007/s11043-005-3442-1

    Article  Google Scholar 

  • Atanacković, T.M., Pilipović, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 465(2106), 1869–1891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Atanacković, T.M., Pilipović, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod. Int. J. Eng. Sci. 49(2), 175–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Atanacković, T.M., Pilipović, S., Stanković, B., Zorica, D.: Fractional Calculus with Applications in Mechanics. ISTE Ltd/Wiley, London/Hoboken (2014)

    Book  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of the fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983). doi:10.1122/1.549724

    Article  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)

    Article  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations. I. Int. J. Appl. Math. 2(7), 865–882 (2000)

    MathSciNet  MATH  Google Scholar 

  • Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods, CNC. Series on Complexity (2012)

    Book  MATH  Google Scholar 

  • Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1–2), 101–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Caputo, M.: Linear models of dissipation whose \(Q\) is almost frequency independent II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967). Reprinted in Fract. Calc. Appl. Anal. 10(3), 309–324 (2007)

    Article  MathSciNet  Google Scholar 

  • Caputo, M.: Mean fractional-order-derivatives differential equations and filters. Ann. Univ. Ferrara 41(1), 73–84 (1995)

    MathSciNet  MATH  Google Scholar 

  • Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4(4), 421–442 (2001)

    MathSciNet  MATH  Google Scholar 

  • Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971a). Reprinted in Fract. Calc. Appl. Anal. 10 (3), 309–324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento 1(2), 161–198 (1971b). doi:10.1007/BF02820620

    Article  Google Scholar 

  • Chen, W., Zhang, J., Zhang, J.: A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. 16(1), 76–92 (2013)

    MathSciNet  MATH  Google Scholar 

  • Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225(1), 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Di Paola, M., Zingales, M.: Exact mechanical models of fractional hereditary materials. J. Rheol. (1978-present) 56(5), 983–1004 (2012)

    Article  Google Scholar 

  • Di Paola, M., Pinnola, F.P., Zingales, M.: A discrete mechanical model of fractional hereditary materials. Meccanica 48(7), 1573–1586 (2013a)

    Article  MathSciNet  MATH  Google Scholar 

  • Di Paola, M., Pinnola, F.P., Zingales, M.: Fractional differential equations and related exact mechanical models. Comput. Math. Appl. 66(5), 608–620 (2013b)

    Article  MathSciNet  MATH  Google Scholar 

  • Duffy, D.G.: On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications. ACM Trans. Math. Softw. 19(3), 333–359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Duffy, D.G.: Transform Methods for Solving Partial Differential Equations. CRC Press, Boca Raton (2004)

    Book  MATH  Google Scholar 

  • Gemant, A.: XLV. On fractional differentials. Phil. Mag. 25, 540–549 (1938)

    Article  MATH  Google Scholar 

  • Glaeske, H.J., Prudnikov, A.P., Skòrnik, K.A.: Operational Calculus and Related Topics. Chapman & Hall/CRC Press, London/Boca Raton (2006)

    Book  MATH  Google Scholar 

  • Hu, S., Li, Y., Chen, Y.Q.: Application of numerical inverse Laplace transform algorithms in fractional calculus. J. Franklin Inst. 348(2), 315–330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Series on Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  • Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51(2), 299–307 (1984). doi:10.1115/1.3167616

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, L., Pan, F., Xue, D.: Variable-order fuzzy fractional PID controller. ISA Trans. 55, 227–233 (2015)

    Article  Google Scholar 

  • Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  • Mainardi, F.: An historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal. 15(4), 712–717 (2012). arXiv:1007.2959

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi, F., Mura, A., Gorenflo, R., Stojanovic, M.: The two forms of fractional relaxation of distributed order. J. Vib. Control 13(9), 1249–1268 (2007). arXiv:cond-mat/0701131

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Fractional relaxation and time-fractional diffusion of distributed order. J. Vib. Control 14(9–10), 1267–1290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler, R., Nonnenmacher, T.F.: Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials. Int. J. Plast. 19(7), 941–959 (2003). doi:10.1016/S0749-6419(02)00087-6

    Article  MATH  Google Scholar 

  • Metzler, R., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995b). doi:10.1063/1.470346

    Article  Google Scholar 

  • Najafi, H.S., Sheikhani, A.R., Ansari, A.: Stability analysis of distributed order fractional differential equations. Abstr. Appl. Anal. 4(2), 175323 (2011)

    MathSciNet  MATH  Google Scholar 

  • Oldham, K.B., Spanier, J.: The fractional calculus. Math. Gaz. 56(247), 396–400 (1974)

    MathSciNet  MATH  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  • Rogosin, S., Mainardi, F.: George William Scott Blair—the pioneer of factional calculus in rheology. J. Appl. Ind. Math. 6(1), 3418–3426 (2014)

    MathSciNet  MATH  Google Scholar 

  • Schiessel, H., Metzler, H.R., Blumen, A., Nonnenmacher, T.F.: Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A, Math. Gen. 28(23), 6567–6584 (1995a)

    Article  MATH  Google Scholar 

  • Scott-Blair, G.W., Gaffyn, J.E.: VI. An application of the theory of quasi-properties to the treatment of anomalous strain–stress relations. Philos. Mag. A 40(300), 80–94 (1949). doi:10.1088/0305-4470/28/23/012

    Article  Google Scholar 

  • Shampine, L.F.: Vectorized adaptive quadrature in Matlab. J. Comput. Appl. Math. 211, 131–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Phys. Pol. B 35(4), 1323–1341 (2004)

    Google Scholar 

  • Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals, 1st edn. Chelsea, New York (1986) [First Edition, Oxford University Press, Oxford 1937]

    MATH  Google Scholar 

  • Welch, S.W.J., Rorrer, R.A.L., Duren, R.G.: Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech. Time-Depend. Mater. 3(3), 279–303(25) (1999)

    Article  Google Scholar 

  • Xu, M., Tan, W.: Intermediate processes and critical phenomena: theory, method and progress of fractional operators and their applications to modern mechanics. Sci. China Ser. A 49(3), 257–272 (2006)

    Article  MATH  Google Scholar 

  • Zhou, F., Zhao, Y., Li, Y., Chen, Y.: Design, implementation and application of distributed order PI control. ISA Trans. 52(3), 429–437 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work provided by the National Basic Research Program of China (Nos. 2015CB251601, 2013CB227900), National Natural Science Foundation (Nos. 51322401, 51421003, U1261201), the Fundamental Research Funds for the Central Universities (Nos. 2014YC09, 2014ZDPY08) (China University of Mining and Technology) and the 111 Project (No. B07028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Pu, H., Li, Y. et al. Time domain analysis of the weighted distributed order rheological model. Mech Time-Depend Mater 20, 601–619 (2016). https://doi.org/10.1007/s11043-016-9314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-016-9314-z

Keywords

Navigation