Skip to main content
Log in

Fractional calculus model of articular cartilage based on experimental stress-relaxation

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CERF:

Complementary error viscoelastic model

E(t):

Time-dependent relaxation modulus

\(\dot{E}(t)\) :

Time derivative of relaxation modulus

E′(ω):

Storage modulus

E″(ω):

Loss modulus

E (ω):

Complex modulus, E′(ω)+iE″(ω)

erfc:

Complementary error function

i :

Imaginary unit

n :

Index

s :

Laplace variable

α :

Fractional derivative order

ϵ(t):

Strain

\(\dot{\epsilon}(t)\) :

Strain rate

η :

Spring-pot time constant

Γ :

Gamma function

μ :

CERF model material constant, E/η

ω :

Frequency (rad/s)

σ(t):

Stress

References

  • Erdelyi, A., Oberhettinger, F., Magnus, W., Tricomi, F. (eds.): Higher Transcendental Functions, vol. III. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  • Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  • Argatov, I.I.: Mathematical modeling of linear viscoelastic impact: application to drop impact testing of articular cartilage. Tribol. Int. 63, 213–225 (2013)

    Article  Google Scholar 

  • Armstrong, C.G., Lai, W.M., Mow, V.C.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106(2), 165–173 (1984)

    Article  Google Scholar 

  • Ateshian, G.A.: The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42(9), 1163–1176 (2009)

    Article  Google Scholar 

  • Ateshian, G.A., Warden, W.H., Kim, J.J., Grelsamer, R.P., Mow, V.C.: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30(11–12), 1157–1164 (1997)

    Article  Google Scholar 

  • Ateshian, G.A., Wang, H., Lai, W.M.: The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. J. Tribol. 120(2), 241–248 (1998)

    Article  Google Scholar 

  • Bagley, R.L.: Power law and fractional calculus model of viscoelasticity. AIAA J. 27(10), 1412–1417 (1989)

    Article  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: A generalized derivative model for an elastomer damper. Shock Vibr. Bull. 49(2), 135–143 (1979)

    Google Scholar 

  • Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983).

    Article  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23(6), 918–925 (1985)

    Article  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)

    Article  MATH  Google Scholar 

  • Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics. Courses and Lectures/International Centre for Mechanical Sciences/International Centre for Mechanical Sciences Udine, vol. 378. Springer, London (1997)

    Book  MATH  Google Scholar 

  • Charnley, J.: The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann. Rheum. Dis. 19, 10–19 (1960)

    Article  Google Scholar 

  • Coletti, J.M., Akeson, W.H., Woo, S.L.Y.: A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface. J. Bone Jt. Surg. 54-A(1), 147–160 (1972)

    Google Scholar 

  • DiSilvestro, M.R., Suh, J.K.F.: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34(4), 519–525 (2001)

    Article  Google Scholar 

  • Ehlers, W., Markert, B.: A linear viscoelastic two-phase model for soft tissues: application to articular cartilage. Z. Angew. Math. Mech. 80(S1), 149–152 (2000)

    Article  Google Scholar 

  • Ehlers, W., Markert, B.: A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J. Biomech. Eng. 123(5), 418–424 (2001)

    Article  Google Scholar 

  • Eisenfeld, J., Mow, V.C., Lipshitz, H.: Mathematical analysis of stress relaxation in articular cartilage during compression. Math. Biosci. 39(1–2), 97–112 (1978)

    Article  Google Scholar 

  • Elsharkawy, A.A., Nassar, M.M.: Hydrodynamic lubrication of squeeze-film porous bearings. Acta Mech. 118, 121–134 (1996)

    Article  MATH  Google Scholar 

  • Friswell, M.: The response of rotating machines on viscoelastic supports. Int. Rev. Mec. Eng. 1(1), 32–40 (2007)

    Google Scholar 

  • Fung, Y.C.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213(6), 1532–1544 (1967)

    Google Scholar 

  • Garcia, J.J., Cortes, D.H.: A nonlinear biphasic viscohyperelastic model for articular cartilage. J. Biomech. 39(16), 2991–2998 (2006)

    Article  Google Scholar 

  • Grybos, G.R.: The dynamics of a viscoelastic rotor in flexible bearings. Arch. Appl. Mech. 61(1), 479–487 (1991)

    Google Scholar 

  • Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11(1), 291–356 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  • Hilton, H.H.: Generalized fractional derivative anisotropic viscoelastic characterization. Materials 5(1), 169–191 (2012). doi:10.3390/ma5010169

    Article  Google Scholar 

  • Julkunen, P., Wilson, W., Jurvelin, J.S., Rieppo, J., Qu, C.J., Lammi, M.J., Korhonen, R.K.: Stress relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J. Biomech. 41(9), 1978–1986 (2008)

    Article  Google Scholar 

  • Kisela, T.: Fractional generalization of the classical viscoelasticity models. In: Proceedings of 8th International Conference Aplimat 2009, pp. 593–600 (2009)

    Google Scholar 

  • Koeller, R.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Koeller, R.C.: Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics. Acta Mech. 58(3–4), 251–264 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Lai, W.M., Mow, V.C., Roth, V.: Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103(2), 61–66 (1981)

    Article  Google Scholar 

  • Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113(3), 245–258 (1991)

    Article  Google Scholar 

  • Lakes, R.: Viscoelastic Solids. Mechanical and Aerospace Engineering Series. Taylor & Francis, London (1998)

    Google Scholar 

  • Magin, R.: Fractional Calculus in Bioengineering. Begell House Publishers, Readding (2006)

    Google Scholar 

  • Mainardi, F., Spada, G.: Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 193(1), 133–160 (2011)

    Article  Google Scholar 

  • Mak, A.F.: The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108(2), 123–130 (1986)

    Article  Google Scholar 

  • Malda, J., Benders, K.E.M., Klein, T.J., de Grauw, J.C., Kik, M.J.L., Hutmacher, D.W., Saris, D.B.F., van Weeren, P.R., Dhert, W.J.A.: Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthr. Cartil. 20(10), 1147–1151 (2012)

    Article  Google Scholar 

  • McCutchen, C.W.: The frictional properties of animal joints. Wear 5(1), 1–17 (1962)

    Article  Google Scholar 

  • Miller, B., Green, I.: On the stability of gas lubricated triboelements using the step jump method. J. Tribol. 119(1), 193–199 (1997)

    Article  Google Scholar 

  • Mow, V., Gu, W., Chen, F.: Structure and Function of Articular Cartilage and Meniscus. In: Basic Orthopaedic Biomechanics & Mechano-Biology, 3rd edn., pp. 181–258. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  • Mow, V.C., Mansour, J.M.: The nonlinear interaction between cartilage deformation and interstitial fluid flow. J. Biomech. 10(1), 31–39 (1977)

    Article  Google Scholar 

  • Mow, V.C., Lipshitz, H., Glimcher, M.J.: Mechanisms for stress relaxation in articular cartilage. In: 23rd Annual Meeting of the Orthopaedic Research Society, Las Vegas, vol. 2, p. 71. The Orthopaedic Research Society, Rosemont (1977)

    Google Scholar 

  • Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980)

    Article  Google Scholar 

  • Mow, V.C., Ateshian, G.A., Spilker, R.L.: Biomechanics of diarthrodial joints: a review of twenty years of progress. J. Biomech. Eng. 115(4B), 460–467 (1993)

    Article  Google Scholar 

  • Parsons, J.R., Black, J.: The viscoelastic shear behavior of normal rabbit articular cartilage. J. Biomech. 10(1), 21–29 (1977)

    Article  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, Elsevier, Amsterdam (1998)

    Google Scholar 

  • Rogers, L.: Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 27(4), 351–372 (1983)

    Article  MATH  Google Scholar 

  • Schiessel, H., Blumen, A.: Hierarchical analogues to fractional relaxation equations. J. Phys. A, Math. Gen. 26(19), 5057 (1993)

    Article  Google Scholar 

  • Schiessel, H., Blumen, A.: Mesoscopic pictures of the sol-gel transition: ladder models and fractal networks. Macromolecules 28(11), 4013–4019 (1995). http://pubs.acs.org/doi/pdf/10.1021/ma00115a038. doi:10.1021/ma00115a038

    Article  Google Scholar 

  • Schiessel, H., Metzler, R., Blumen, A., Nonnenmacher, T.F.: Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A, Math. Gen. 28(23), 6567 (1995)

    Article  MATH  Google Scholar 

  • Simon, B.R., Coats, R.S., Woo, S.L.Y.: Relaxation and creep quasilinear viscoelastic models for normal articular cartilage. J. Biomech. Eng. 106(2), 159–164 (1984)

    Article  Google Scholar 

  • Smyth, P.: Viscoelastic behavior of articular cartilage in unconfined compression. Master’s thesis, Georgia Institute of Technology (2013)

  • Smyth, P.A., Rifkin, R.E., Jackson, R.L., Reid Hanson, R.: The average roughness and fractal dimension of articular cartilage during drying. Scanning 36(3), 368–375 (2014)

    Article  Google Scholar 

  • Szumski, R.G.: A finite element formulation for the time domain vibration analysis of an elastic-viscoelastic structure. Ph.D. thesis, Georgia Institute of Technology (1993)

  • Szumski, R.G., Green, I.: Constitutive laws in time and frequency domains for linear viscoelastic materials. J. Acoust. Soc. Am. 90(40), 2292 (1991)

    Article  Google Scholar 

  • Tanaka, E., Pelayo, F., Kim, N., Lamela, M.J., Kawai, N., Fernãndez-Canteli, A.: Stress relaxation behaviors of articular cartilages in porcine temporomandibular joint. J. Biomech. 47(7), 1582–1587 (2014)

    Article  Google Scholar 

  • Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51(2), 294–298 (1984)

    Article  MATH  Google Scholar 

  • Wang, J.L., Parnianpour, M., ShiraziAdl, A., Engin, A.E.: Failure criterion of collagen fiber: viscoelastic behavior simulated by using load control data. Theor. Appl. Fract. Mech. 27(1), 1–12 (1997)

    Article  Google Scholar 

  • West, B., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Institute for Nonlinear Science/Springer, Berlin (2003)

    Book  Google Scholar 

  • Wilson, W., van Donkelaar, C.C., van Rietbergen, B., Ito, K., Huiskes, R.: Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J. Biomech. 37(3), 357–366 (2004)

    Article  Google Scholar 

  • Wilson, W., van Donkelaar, C.C., van Rietbergen, B., Huiskes, R.: A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J. Biomech. 38(6), 1195–1204 (2005)

    Article  Google Scholar 

  • Woo, S.L.Y., Simon, B.R., Kuei, S.C., Akeson, W.H.: Quasi-linear viscoelastic properties of normal articular cartilage. J. Biomech. Eng. 102(2), 85–90 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF Grant No. DGE-1148903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Smyth.

Appendix

Appendix

For simplicity, only a one-element fractional derivative model is developed. However, the one-element model can be generalized to include multiple elements in parallel by the principle of linear superposition. This concept is analogous to that of the more common Prony series. The constitutive equation relating stress to strain is similar to that of a standard linear viscoelastic material:

$$\begin{aligned} \biggl(1+\frac{E_0}{E_1} \biggr)\frac{d{\epsilon}}{dt} + \frac {E_0}{c_1} \epsilon= \frac{1}{E_1}\frac{d{\sigma}}{dt} + \frac {1}{c_1}\sigma, \end{aligned}$$
(A.1)

except that the dashpot is replaced with the spring-pot element

$$\begin{aligned} \frac{d\epsilon}{dt} \longleftarrow\frac{d^\alpha\epsilon }{dt^\alpha} \end{aligned}$$
(A.2)

and

$$\begin{aligned} \frac{d\sigma}{dt} \longleftarrow\frac{d^\alpha\sigma}{dt^\alpha}, \end{aligned}$$
(A.3)

leading to the constitutive equation for the fractional derivative model

$$\begin{aligned} \biggl(1+\frac{E_0}{E_1} \biggr)\frac{d^{\alpha}{\epsilon }}{dt^\alpha} + \frac{E_0}{\eta_1} \epsilon= \frac{1}{E_1}\frac {d^\alpha{\sigma}}{dt^\alpha} + \frac{1}{\eta_1}\sigma. \end{aligned}$$
(A.4)

In Eq. (A.4), the damping coefficient c 1 has been replaced by η 1 to reflect unit consistency. If α=1, then the constitutive model becomes the standard linear material (one-term Prony model shown in Eq. (A.1)), and the units of η 1 collapse to those of c 1 (Pa s). If α=0, then the spring-pot simply becomes strictly a spring, and the entire model is reduced to an equivalent linear spring. For any fractional valued α between 0 and 1, the spring-pot element has both spring and dashpot behavior.

Equation (A.4) is conveniently analyzed in the Laplace domain, which allows for the treatment of the fractional power (taking Caputo’s definition of the fractional-order derivative and assuming that the initial conditions for stress and strain can be set to zero (Podlubny 1998)):

$$\begin{aligned} \biggl[ \biggl(1+\frac{E_0}{E_1} \biggr)s^{\alpha} + \frac{E_0}{\eta _1} \biggr]\epsilon(s) = \biggl(\frac{1}{E_1}s^\alpha+ \frac {1}{\eta_1} \biggr)\sigma(s). \end{aligned}$$
(A.5)

Utilizing the elastic–viscoelastic correspondence principle (Eq. (2)), the relaxation modulus E(s) can be found from Eq. (A.5):

$$\begin{aligned} E(s) = \frac{ \bigl[ \bigl(1+\frac{E_0}{E_1} \bigr)s^{\alpha} + \frac{E_0}{\eta_1} \bigr]}{ (\frac{1}{E_1}s^\alpha+ \frac {1}{\eta_1} )}\frac{1}{s}. \end{aligned}$$
(A.6)

The relationship between the Laplace and frequency domains allows for the fractional model to be obtained:

$$\begin{aligned} E(\omega) = \frac{ \bigl[ \bigl(1+\frac{E_0}{E_1} \bigr) (i\omega )^{\alpha} + \frac{E_0}{\eta_1} \bigr]}{ [\frac{1}{E_1} (i\omega )^\alpha+ \frac{1}{\eta _1} ]} \biggl(\frac{1}{i\omega} \biggr). \end{aligned}$$
(A.7)

With some algebra, Eq. (A.7) can be reduced to

$$\begin{aligned} E(\omega) = \frac{1}{i\omega} \biggl[{E_0} + \frac{E_1 (i\omega )^{\alpha}}{ \bigl[ (i\omega )^\alpha+ \frac{E_1}{\eta_1} \bigr]} \biggr]. \end{aligned}$$
(A.8)

If required, the fractional model can be generalized to include more spring-pot elements:

$$\begin{aligned} E(\omega) =\frac{1}{i\omega} \Biggl[{E_0} + \sum _{n=1}^{\infty}\frac{E_n (i\omega )^{\alpha}}{\bigl[ (i\omega )^\alpha+ \frac{E_n}{\eta_n} \bigr]} \Biggr]. \end{aligned}$$
(A.9)

Theoretically, an infinite number of terms can be used. In practice, this number is finite. The complex modulus is found from the elastic–viscoelastic correspondence principle (Eq. (2)):

$$\begin{aligned} E^*(\omega) = E_0 + \sum _{n=1}^{\infty} \frac{E_n (i\omega )^{\alpha}}{ \bigl[ (i\omega )^\alpha+ \frac{E_n}{\eta_n} \bigr]}. \end{aligned}$$
(A.10)

Simplifications for α=1/2 (special case)

For the special case of α=1/2, the mathematics of the fractional model simplify dramatically. In the time domain, a concise solution appears in the form of a complementary error function multiplied by a decaying exponential. An analytic form of the model can be found for the frequency domain solution as well. Consider a one-term fractional model with α=1/2:

$$\begin{aligned} E^*(\omega) = E_0 + \frac{E_1 (i\omega )^{1/2}}{ \bigl[ (i\omega )^{1/2} + \frac{E_1}{\eta_1} \bigr]}. \end{aligned}$$
(A.11)

The square root of can be found from the generalized form of de Moivre’s theorem:

$$\begin{aligned} (i\omega)^{1/2} = \frac{\sqrt{2\omega}}{2}(1+i). \end{aligned}$$
(A.12)

Two substitutions help clarify the mathematics:

$$\begin{aligned} \beta= \frac{\sqrt{2\omega}}{2}, \end{aligned}$$
(A.13)
$$\begin{aligned} \mu_1 = \frac{E_1}{\eta_1}. \end{aligned}$$
(A.14)

Both β and μ 1 have the units \({\rm s}^{-1/2}\). Substituting these relations into Eq. (A.11) yields

$$\begin{aligned} E^*(\omega) = E_0 + \frac{E_1\beta(1+i)}{\mu_1 + \beta(1+i)}. \end{aligned}$$
(A.15)

After algebraic manipulation and the simplification (1+i)2=2i, Eq. (A.15) is

$$\begin{aligned} E^*(\omega) = E_0 + E_1\beta \biggl[\frac{\mu_1 - (2\beta- \mu _1)i}{\mu_1^2 - 2\beta^2 i} \biggr]. \end{aligned}$$
(A.16)

Additional manipulation leads to a usable expression:

$$\begin{aligned} E^*(\omega) = E_0 + E_1\beta \biggl[\frac{\mu_1 + 2\beta}{\mu_1^2 + 2\mu_1\beta+ 2\beta^2} + \frac{ i\mu_1}{\mu_1^2 + 2\mu_1\beta + 2\beta^2} \biggr]. \end{aligned}$$
(A.17)

Reintroducing the substitution of Eq. (A.13), the derivation of the one-element CERF model is complete:

$$\begin{aligned} E^*(\omega) = E_0 + E_1 \biggl[\frac{ \bigl(\frac{\sqrt{2\omega }}{2} \bigr)\mu_1 + \omega}{\mu_1^2 + \mu_1\sqrt{2\omega} + \omega} + \frac{ i \bigl(\frac{\sqrt{2\omega}}{2} \bigr)\mu _1}{\mu_1^2 + \mu_1\sqrt{2\omega} + \omega} \biggr]. \end{aligned}$$
(A.18)

Equations (A.18) can be generalized for any number of fractional terms, although the utility of the fractional model is that few terms typically need to be used to characterize viscoelastic behavior:

$$\begin{aligned} E^*(\omega) = E_0 + \sum _{n=1}^{\infty} E_n \biggl[\frac { \bigl(\frac{\sqrt{2\omega}}{2} \bigr)\mu_n + \omega}{\mu_n^2 + \mu_n\sqrt{2\omega} + \omega} + \frac{ i \bigl(\frac{\sqrt {2\omega}}{2} \bigr)\mu_n}{\mu_n^2 + \mu_n\sqrt{2\omega} + \omega} \biggr], \end{aligned}$$
(A.19)

and if

$$\begin{aligned} E^*(\omega) = E'(\omega) + iE''(\omega), \end{aligned}$$
(A.20)

then

$$\begin{aligned} E'(\omega) = E_0 + \sum _{n=1}^{\infty} E_n \biggl[\frac { \bigl(\frac{\sqrt{2\omega}}{2} \bigr)\mu_n + \omega}{\mu_n^2 + \mu_n\sqrt{2\omega} + \omega} \biggr], \end{aligned}$$
(A.21)
$$\begin{aligned} E''(\omega) = \sum _{n=1}^{\infty} E_n \biggl[\frac{ \bigl(\frac{\sqrt{2\omega}}{2} \bigr)\mu_n}{\mu_n^2 + \mu_n\sqrt {2\omega} + \omega} \biggr]. \end{aligned}$$
(A.22)

For the fractional derivative model where α=1/2, there exists a concise time-domain solution (Szumski and Green 1991):

$$\begin{aligned} E(t) = E_0 + \sum _{n=1}^{\infty}E_n e^{ ({\mu_n}^2 t )} \mathrm{erfc}~(\mu_n \sqrt{t}), \end{aligned}$$
(A.23)

which is a decaying complementary error function multiplied by an increasing exponential. The time-domain solution is critical for fitting experimental data. The Laplace transformation of Eq. (9) is given by Szumski and Green (1991):

$$\begin{aligned} E(s) = \frac{1}{s} \Biggl[E_0 + \sum _{n=1}^{\infty} \frac {E_n\sqrt{s}}{\sqrt{s}+\mu_n} \Biggr]. \end{aligned}$$
(A.24)

Equation (A.24) and application of the elastic–viscoelastic correspondence principle allows us to relate the CERF model in the time and frequency domains, noting the connection between the Laplace and Fourier transformations (replace the Laplace variable s with the Fourier variable ). We then arrive back at Eq. (A.19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smyth, P.A., Green, I. Fractional calculus model of articular cartilage based on experimental stress-relaxation. Mech Time-Depend Mater 19, 209–228 (2015). https://doi.org/10.1007/s11043-015-9260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-015-9260-1

Keywords

Navigation