Skip to main content
Log in

Constitutive modeling of the nonlinearly viscoelastic response of asphalt binders; incorporating three-dimensional effects

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

A dynamic shear rheometer is again used to characterize the nonlinearly viscoelastic properties of asphalt binders at intermediate or high temperatures. In our previous work, the dynamic shear rheometer test results showed that, under certain conditions, a compressive normal force was generated in an axially constrained specimen subjected to cyclic torque histories. This normal force could not be solely attributed to the Poynting effect and was also related to the tendency of the asphalt binder to dilate when subjected to shear loads. The generated normal force changed the state of stress and interacted with the shear behavior of asphalt binder. This effect was considered to be an “interaction nonlinearity” or “three-dimensional effect.” The concept is explored further in this paper by developing a fundamental approach to modeling the observed behavior. In this approach, the octahedral shear stress is used to represent the three-dimensional stress state in Schapery’s model of nonlinearly viscoelastic behavior. The model was successfully validated for several different loading histories. These results highlight the importance of modeling the mechanical behavior of asphalt binders based on the three-dimensional stress state of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Airey, G.D., Rahimzadeh, B., Collop, A.C.: Linear rheological behavior of bituminous paving materials. J. Mater. Civ. Eng. 16(3), 212–220 (2004)

    Article  Google Scholar 

  • Anderson, D.A., Christensen, D.W., Bahia, H.U., Dongre, R., Sharma, M.G., Antle, C.E., Button, J.: Binder characterization and evaluation, Vol. 3: physical characterization. Strategic highway research program. Report shrp-a-369, National Research Council, Washington, ISBN 0-309-05767-1 (1994)

  • Bahia, H.U., Hanson, D.I., Zeng, M., Zhai, H., Khatri, M.A., Anderson, R.M.: Characterization of Modified Asphalt Binders in Superpave Mix Design. Publication NCHRP, vol. 459. National Academy Press, Washington (2001)

    Google Scholar 

  • Bailey, R.: The utilization of creep test data in engineering design. Proc. Inst. Mech. Eng. 131, 131–349 (1935)

    Article  Google Scholar 

  • Bernstein, B., Kearsley, E.A., Zapas, L.J.: A study of stress relaxation with finite strain. Trans. Soc. Rheol. 7, 391–410 (1963)

    Article  MATH  Google Scholar 

  • Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity: An Introduction. Springer, Berlin (2008)

    Book  Google Scholar 

  • Carreau, P.J., De Kee, D.C.R., Chhabra, R.P.: Rheology of Polymeric Systems—Principles and Applications. Hanser/Gardner, Cincinnati (1997)

    Google Scholar 

  • Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 3, 239–249 (1961)

    Article  MathSciNet  Google Scholar 

  • Darvish, K.K., Crandall, J.R.: Nonlinear viscoelastic effect in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23, 633–645 (2001)

    Article  Google Scholar 

  • Delgadillo, R.: Nonlinearity of asphalt binder and the relationship with asphalt mixture permanent deformation. Ph.D. thesis, University of Wisconsin at Madison (2008)

  • Delgadillo, R., Bahia, H.U.: The relationship between nonlinearity of asphalt binders and asphalt mixture permanent deformation. Road Mater, Pavement Des. 11(3), 653–680 (2010)

    Google Scholar 

  • Di Benedetto, H., Olard, F., Sauzeat, C., Delaporte, B.: Linearly viscoelastic behavior of bituminous materials: from binders to mixes. Road Mater, Pavement Des. 5, 163–202 (2004)

    Article  Google Scholar 

  • Drakos, C., Roque, R., Birgisson, B.: Effect of measured tire contact stresses on near-surface rutting. In: Transportation Research Record, vol. 1764, pp. 59–69. National Research Council, Washington (2001)

    Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  • Findley, W.N., Lai, J.S., Onaran, K.: Creep and Relaxation of Nonlinearly Viscoelastic Materials with Introduction to Linearly Viscoelasticity. North-Holland Series in Applied Mathematics and Mechanics. North-Holland, Amsterdam (1976)

    Google Scholar 

  • Freudenthal, A.M., Ronay, M.: Second order effects in dissipative media. Proc. R. Soc. Lond. A 292, 14–50 (1966)

    Article  Google Scholar 

  • Fung, Y.C.: Stress-strain-history Relations of Soft Tissues in Simple Elongation. Biomechanics, Its Foundations and Objectives. Prentice Hall, New York (1972)

    Google Scholar 

  • Green, A.E., Rivlin, R.S.: The mechanics of nonlinear materials with memory. Part I. Arch. Ration. Mech. Anal. 1, 1–21 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Green, A.E., Rivlin, R.S.: The mechanics of nonlinear materials with memory. Part III. Arch. Ration. Mech. Anal. 4, 387–404 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Hiel, C.C., Cardon, A.H., Brinson, H.F.: Viscoelastic modeling of epoxy-resins for adhesive and composite applications. In: Proc. of the 5th International Conference on Experimental Mechanics, Montreal, pp. 263–267 (1984)

    Google Scholar 

  • Huang, C.: Development and numerical implementation of nonlinear viscoelasic–viscoplastic model for asphalt materials. Ph.D. thesis, Texas A&M University (2008)

  • Huang, Y.H.: Pavement Analysis and Design, 2nd edn. Pearson/Prentice-Hall, New York (2004)

    Google Scholar 

  • Kim, Y.R., Little, D.N.: Linearly viscoelastic analysis of asphalt mastic. J. Mater. Civ. Eng. 16(2), 122–132 (2004)

    Article  Google Scholar 

  • Knauss, W.G., Emri, I.J.: Nonlinearly viscoelasticity based on free volume consideration. Comput. Struct. 13, 123–128 (1981)

    Article  MATH  Google Scholar 

  • Kose, S.: Development of a virtual test procedure for asphalt concrete. Ph.D. thesis, University of Wisconsin at Madison (2001)

  • Lai, J.S., Anderson, D.: Irrecoverable and recoverable nonlinearly viscoelastic properties of asphalt concrete. Highw. Res. Rec. 468, 73–88 (1973)

    Google Scholar 

  • Lakes, R.S.: Viscoelastic Materials. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  • Lakes, R.S., Kose, S., Bahia, H.U.: Analysis of high volume fraction irregular particles damping composites. J. Eng. Mater. Technol. 124, 174–178 (2002)

    Article  Google Scholar 

  • Lianis, G.: Constitutive equations of viscoelastic solids under finite deformation. Purdue university report a & ES 63-11 (1963)

  • Lu, H., Knauss, W.G.: The role of dilatation in the nonlinearly viscoelastic behavior of PMMA under multiaxial stress states. Mech. Time-Depend. Mater. 2(4), 307–334 (1999)

    Article  Google Scholar 

  • Marasteanu, O., Anderson, D.A.: Improved model for bitumen rheological characterization. In: Eurobitume Workshop on Performance Related Properties for Bituminous Binder, Luxembourg (1999). Paper No. 133

    Google Scholar 

  • Masad, E., Somevadan, N., Bahia, H.U., Kose, S.: Modeling and experimental measurements of strain distribution in asphalt mixes. J. Transp. Eng. 127(6), 477–485 (2001)

    Article  Google Scholar 

  • Masad, E., Huang, C., Airey, G., Muliana, A.: Nonlinearly viscoelastic analysis of unaged and aged asphalt binders. Constr. Build. Mater. 22(11), 2170–2179 (2008)

    Article  Google Scholar 

  • McGuirt, C.W., Lianis, G.: Experimental investigation of non-linear, non-isothermal viscoelasticity. Int. J. Eng. Sci. 7, 579–599 (1969)

    Article  Google Scholar 

  • Motamed, A., Bahia, H.U.: Influence of test geometry, temperature, stress level, and loading duration on binder properties measured using dynamic shear rheometer. J. Mater. Civ. Eng. 23(10), 1 (2011)

    Google Scholar 

  • Motamed, A., Bhasin, A., Liechti, K.M.: Interaction nonlinearity in asphalt binders. Journal of Mechanics of Time Dependent Materials (2011)

  • Norton, F.: Creep of High Temperatures. McGraw Hill, New York (1929)

    Google Scholar 

  • Park, S.J., Liechti, K.M.: Rate-dependent large strain behavior of a structural adhesive. J. Mech.Time-Depend. Mater. 7, 143–164 (2003)

    Article  Google Scholar 

  • Park, S.J., Liechti, K.M., Roy, S.: Simplified bulk experiments and hygrothermal nonlinearly viscoelasticity. J. Mech. Time-Depend. Mater. 8, 303–344 (2004)

    Article  Google Scholar 

  • Park, S., Liechti, K.M., Roy, S.: A nonlinearly viscoelastic fracture analysis of concrete/frp delamination in aggressive environments. Int. J. Fract. Mech. 142(1), 9–27 (2006)

    Article  Google Scholar 

  • Popelar, C.F., Liechti, K.M.: Multiaxial nonlinearly viscoelastic characterization and modeling of a structural adhesive. J. Eng. Mater. Technol. 119, 205–210 (1997)

    Article  Google Scholar 

  • Popelar, C.F., Liechti, K.M.: A distortion-modified free volume theory for nonlinearly viscoelastic behavior. J. Mech.Time-Depend. Mater. 7, 89–141 (2003)

    Article  Google Scholar 

  • Poynting, J.I.-I.: On pressure perpendicular to the shear-planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. Lond. 82, 546–559 (1909)

    Article  MATH  Google Scholar 

  • Reinke, G., Glidden, S., Engber, S., Herlitzka, D.: Rheological properties of polymer modified binders and mixtures related to mixture resistance to permanent deformation. In: Proceedings of the Fifty-First Annual Conference of the Technical Asphalt Association, Prince Edward Island, pp. 57–85 (2006)

    Google Scholar 

  • Schapery, R.A.: Approximate methods of transform inversion for viscoelastic stress analysis. In: Proceedings of 4th US National Congress of Applied Mechanics (ASME 2), New York, pp. 1075–1085 (1962)

    Google Scholar 

  • Schapery, R.A.: Further development of a thermodynamic constitutive theory: stress formulation. Purdue university report AA&ES 69-2 (1969a)

  • Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969b)

    Article  Google Scholar 

  • Turner, S.: The strain response of plastics to complex stress histories. Polym. Eng. Sci. 6, 306–316 (1966)

    Article  Google Scholar 

  • You, Z., Dai, Q.: A review of advances in micromechanical modeling of aggregate–aggregate interaction in asphalt mixture. Can. J. Civ. Eng. 34(2), 1519–1528 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the Federal Highway Administration FHWA and Asphalt Research Consortium for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Liechti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motamed, A., Bhasin, A. & Liechti, K.M. Constitutive modeling of the nonlinearly viscoelastic response of asphalt binders; incorporating three-dimensional effects. Mech Time-Depend Mater 17, 83–109 (2013). https://doi.org/10.1007/s11043-012-9178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9178-9

Keywords

Navigation