Skip to main content
Log in

Application of fractional derivative models in linear viscoelastic problems

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Appropriate knowledge of viscoelastic properties of polymers and elastomers is of fundamental importance for a correct modelization and analysis of structures where such materials are present, especially when dealing with dynamic and vibration problems. In this paper experimental results of a series of compression and tension tests on specimens of styrene-butadiene rubber and polypropylene plastic are presented; tests consist of creep and relaxation tests, as well as cyclic loading at different frequencies. Experimental data are then used to calibrate some linear viscoelastic models; besides the classical approach based on a combination in series or parallel of standard mechanical elements as springs and dashpots, particular emphasis is given to the application of models whose constitutive equations are based on differential equations of fractional order (Fractional Derivative Model). The two approaches are compared analyzing their capability to reproduce all the experimental data for given materials; also, the main computational issues related with these models are addressed, and the advantage of using a limited number of parameters is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolfsson, K., Enelund, M., Olsson, P.: On the fractional order model of viscoelasticity. Mech. Time-Depend. Mater. 9, 15–34 (2005)

    Article  Google Scholar 

  • Alfrey, T.: Nonhomogeneous stress in viscoelastic media. Q. J. Appl. Math. 21(113), 113–119 (1944)

    MathSciNet  Google Scholar 

  • Amin, A.F.M.S., Alam, M.S., Okui, Y.: An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification. Mech. Mater. 34, 75–95 (2002)

    Article  Google Scholar 

  • Atanackovic, T.M.: A modified Zener model of a viscoelastic body. Contin. Mech. Thermodyn. 14, 137–148 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Atanackovic, T.M., Stankovic, B.: Dynamics of viscoelastic rod of fractional derivative type. J. Appl. Math. Mech. 82, 377–386 (2002)

    MathSciNet  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)

    Article  MATH  Google Scholar 

  • Beda, T., Chevalier, Y.: New methods for identifying rheological parameter for fractional derivative modeling of viscoelastic behavior. Mech. Time-Depend. Mater. 8, 105–118 (2004)

    Article  Google Scholar 

  • Bhuiyan, A.R., Okui, Y., Mitamura, H., Imai, T.: A rheology model of high damping rubber bearings for seismic analysis: identification of nonlinear viscosity. Int. J. Solids Struct. 46, 1778–1792 (2009)

    Article  MATH  Google Scholar 

  • Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity—An introduction. Springer, Berlin (2008)

    Book  Google Scholar 

  • Coussot, C., Kalyanam, S., Yapp, R., Insana, M.F.: Fractional derivative models for ultrasonic characterization of polymer and breast tissue viscoelasticity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4) (2009)

  • Craiem, D., Magin, R.L.: Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Phys. Biol. 7, 013001 (2010)

    Article  Google Scholar 

  • Davis, G.B., Kohandel, M., Sivaloganathan, S., Tenti, G.: The constitutive properties of the brain paraenchyma Part 2. Fractional derivative approach. Med. Eng. Phys. 28, 455–459 (2006)

    Article  Google Scholar 

  • de Espındola, J.J., da Silva Neto, J.M., Lopes, E.M.O.: A generalized fractional derivative approach to viscoelastic material properties measurement. Appl. Math. Comput. 164, 493–506 (2005)

    Article  MATH  Google Scholar 

  • Fung, Y.C.: Foundations of Solid Mechanics. Prentice Hall, New York (1965)

    Google Scholar 

  • Grahovac, N.M., Zigic, M.M.: Modelling of the hamstring muscle group by use of fractional derivatives. Comput. Math. Appl. 59, 1695–1700 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Hernandez-Jimenez, A., Hernandez-Santiago, J., Macias-Garcıa, A., Sanchez-Gonzalez, J.: Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polym. Test. 21, 325–331 (2002)

    Article  Google Scholar 

  • Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000)

    Article  Google Scholar 

  • Hwang, J.S., Wang, J.C.: Seismic response prediction of HDR bearings using fractional derivatives Maxwell model. Eng. Struct. 20, 849–856 (1998)

    Article  Google Scholar 

  • Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, E.H.: Stress analysis in viscoelastic bodies. Q. Appl. 13, 183–190 (1955)

    MATH  Google Scholar 

  • Lewandowski, R., Chorazyczewski, B.: Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)

    Article  Google Scholar 

  • Li, C., Lua, J.: A hyper-viscoelastic constitutive model for polyurea. Mater. Lett. 63, 877–880 (2009)

    Article  Google Scholar 

  • Liu, J.G., Xu, M.Y.: Higher-order fractional constitutive equations of viscoelastic materials involving three different parameters and their relaxation and creep functions. Mech. Time-Depend. Mater. 10, 263–279 (2006)

    Article  Google Scholar 

  • Meral, F.C., Royston, T.J., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15, 939–945 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  • Park, S.W.: Analytical modelling of viscoelastic dampers for structural and vibration control. Int. J. Solids Struct. 38(44–45), 8065–8092 (2001)

    Article  MATH  Google Scholar 

  • Popov, V.L., Geike, T.: A new constitutive model of rubber. Tribol. Int. 40, 1012–1016 (2007)

    Article  Google Scholar 

  • Pritz, T.: Five-parameter fractional derivative model for polymeric damping materials. J. Sound Vib. 265, 935–952 (2003)

    Article  Google Scholar 

  • Read, W.T.: Stress analysis for compressible viscoelastic materials. J. Appl. Phys. 21, 67–674 (1950)

    MathSciNet  Google Scholar 

  • Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior. Springer, Berlin (1989)

    MATH  Google Scholar 

  • Welch, S.W.J., Rorrer, R.A.L., Duren, R.G.: Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech. Time-Depend. Mater. 3, 279–303 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasso, M., Palmieri, G. & Amodio, D. Application of fractional derivative models in linear viscoelastic problems. Mech Time-Depend Mater 15, 367–387 (2011). https://doi.org/10.1007/s11043-011-9153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-011-9153-x

Keywords

Navigation