Skip to main content
Log in

Genetic algorithm based multi-resolution approach for de-speckling OCT image

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Reduction of noise has a considerable effect in medical image processing and computer vision analysis. Medical images are affected by noise due to low radiation exposure, physiological sources and electronic hardware noise. This affects diagnosis quality and quantitative measurements. In this paper, optical coherence tomography images are de-noised through wavelet transform, and the wavelet threshold value is further optimised using genetic algorithm (GA). The optimal levels of wavelet decomposition and threshold correction are performed through GA. The efficacy of the proposed method is verified by comparing the results with other reported wavelet- and GA-based methods in terms of Peak-Signal-to-Noise Ratio (PSNR) parameters. The quality of the resulting image is measured through structural similarity index measure (SSIM), correlation of coefficient (COC) and edge preservation index (EPI) parameters. The improvement of the proposed approach in terms of performance parameters PSNR, COC, SSIM and EPI is respectively 2.24%, 7.9%, 17.18% and 6.32% more than the existing GA-based method considering retinal OCT image. The results indicate that the suggested algorithm effectively suppresses the speckle noise of different noise variances, and the de-noised medical image is more suitable for clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3.
Algorithm 1:
Fig. 4
Algorithm 2:
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Achim A, Bezerianos A, Tsakalides P (2001) Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans Med Imaging 20(8):772–783

    Article  CAS  PubMed  Google Scholar 

  2. Pircher M, Go E, Leitgeb R, Fercher AF, Hitzenberger CK (2003) Speckle reduction in optical coherence tomography by frequency compounding. J Biomed Opt 8(3):565–569

    Article  PubMed  Google Scholar 

  3. Iftimia N, Bouma BE, Tearney GJ (2003) Speckle reduction in optical coherence tomography by path length encoded angular compounding. J Biomed Opt 8(2):260–263

    Article  CAS  PubMed  Google Scholar 

  4. Jorgensen TM, Thrane L, Mogensen M, Pedersen F, Andersen PE (2007) Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method. In European Conference on Biomedical Optics (p. 6627_22). Optica Publishing Group

  5. Abdallah MB, Malek J, Azar AT, Belmabrouk H, Monreal JE, Krissian K (2016) Adaptive noise-reducing anisotropic diffusion filter. Neural Comput Appl 27(5):1273–1300

    Article  Google Scholar 

  6. Sudeep PV, Niwas SI, Palanisamy P, Rajan J, Xiaojun Y, Wang X, Luo Y, Liu L (2016) Enhancement and bias removal of optical coherence tomography images: an iterative approach with adaptive bilateral filtering. Comput Biol Med 71:97–107

    Article  CAS  PubMed  Google Scholar 

  7. Yu W, Ma Y, Zheng L, Liu K (2016) Research of improved adaptive median filter algorithm. Book chapter in Proceedings of the 2015 International Conference on Electrical and Information Technologies for Rail Transportation, Berlin, Heidelberg, Springer, pp. 27–34

  8. Sahu S, Anand A, Singh AK, Agrawal AK, Singh MP (2022) MRI de-noising using improved unbiased NLM filter. J Ambient Intell Humanized Comput 14(1):1–12. https://doi.org/10.1007/s12652-021-03681-0

    Article  Google Scholar 

  9. Esmaeili M, Dehnavi AM, Rabbani H, Hajizadeh F (2017) Speckle noise reduction in optical coherence tomography using two-dimensional curvelet-based dictionary learning. J Med Signals Sens 7(2):86

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tang C, Cao L, Chen J, Zheng X (2017) Speckle noise reduction for optical coherence tomography images via non-local weighted group low-rank representation. Laser Phys Lett 14(5):056002

    Article  ADS  Google Scholar 

  11. Chen H, Fu S, Wang H (2021) Optical coherence tomographic image denoising based on Chi-square similarity and fuzzy logic. Opt Laser Technol 143:107298

    Article  ADS  CAS  Google Scholar 

  12. Chen Q, de Sisternes L, Leng T, Rubin DL (2015) Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images. J Digit Imaging 28(3):346–361

    Article  PubMed  Google Scholar 

  13. Bian L, Suo J, Chen F, Dai Q (2015) Multiframedenoising of high-speed optical coherence tomography data using interframe and intraframe priors. J Biomed Opt 20(3):036006

    Article  PubMed  Google Scholar 

  14. Liu H, Lin S, Ye C, Yu D, Qin J, An L (2020) Using a dual-tree complex wavelet transform for denoising an optical coherence tomography angiography blood vessel image. OSA Continuum 3(9):2630–2645

    Article  Google Scholar 

  15. Arun PS, Gopi VP, Palanisamy P (2022) Despeckling of OCT images using DT-CWT based fusion technique. Optik 263:169332

    Article  ADS  Google Scholar 

  16. Yacoub H, Sarkar TK (2009) A homomorphic approach for through-wall sensing. IEEE Trans Geosci Remote Sens 47(5):1318–1327

    Article  ADS  Google Scholar 

  17. Sahu S, Singh HV, Kumar B, Singh AK, Kumar P (2019) Enhancement and de-noising of OCT image by adaptive wavelet thresholding method. In Handbook of Multimedia Information Security: Techniques and Applications (pp. 449–471). Springer, Cham

  18. Wong A, Mishra A, Bizheva K, Clausi DA (2010) General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt Express 18(8):8338–8352

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Gonzalez RC, Woods RE (2002) Digital image processing. 2nd edn. Prentice Hall, Upper Saddle River

  20. Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  21. Sahu S, Singh HV, Kumar B, Singh AK (2019) De-noising of ultrasound image using Bayesian approached heavy-tailed Cauchy distribution. Multimed Tools Appl 78(4):4089–4106

    Article  Google Scholar 

  22. Paulinas M, Ušinskas A (2007) A survey of genetic algorithms applications for image enhancement and segmentation. Inf Technol Control 36:278–284

    Google Scholar 

  23. Mukhopadhyay S, Mandal JK (2013) Wavelet based denoising of medical images using sub-band adaptive thresholding through genetic algorithm. Procedia Technol 10:680–689

    Article  Google Scholar 

  24. Vaiyapuri T, Alaskar H, Sbai Z, Devi S (2021) GA-based multi-objective optimization technique for medical image denoising in wavelet domain. J Intell Fuzzy Syst 41(1):1–14. https://doi.org/10.3233/JIFS-210429

    Article  Google Scholar 

  25. Xu J, Ou H, Lam EY, Chui PC, Wong KK (2013) Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage. Opt Lett 38(15):2900–2903

    Article  ADS  PubMed  Google Scholar 

  26. Zhou Q, Wen M, Yu B, Lou C, Ding M, Zhang X (2023) Self-supervised transformer based non-local means despeckling of optical coherence tomography images. Biomed Signal Process Control 80:104348

    Article  Google Scholar 

  27. Viedma IA, Alonso-Caneiro D, Read SA, Collins MJ (2022) Deep learning in retinal optical coherence tomography (OCT): a comprehensive survey. Neurocomputing 507:247–264. https://doi.org/10.1016/j.neucom.2022.08.021

    Article  Google Scholar 

  28. Gholami P, Roy P, Parthasarathy MK, Lakshminarayanan V (2020) OCTID: Optical coherence tomography image database. Comput Electr Eng 81:106532

    Article  Google Scholar 

  29. Lahmiri S (2017) An iterative denoising system based on Wiener filtering with application to biomedical images. Opt Laser Technol 90:128–132

    Article  ADS  Google Scholar 

  30. Om H, Biswas M (2014) MMSE based map estimation for image denoising. Opt Laser Technol 57:252–264

    Article  ADS  Google Scholar 

  31. Liu H, Liu J, Hou S et al (2023) Perception consistency ultrasound image super-resolution via self-supervised CycleGAN. Neural Comput & Applic 35:12331–12341. https://doi.org/10.1007/s00521-020-05687-9

    Article  Google Scholar 

  32. Liu Y, Zhang D, Zhang Q, Han J (2022) Part-Object Relational Visual Saliency. IEEE Trans Pattern Anal Mach Intell 44(7):3688–3704. https://doi.org/10.1109/TPAMI.2021.3053577

    Article  PubMed  Google Scholar 

  33. Chen J, Zhang J, Debattista K, Han J (2023) Semi-Supervised Unpaired Medical Image Segmentation Through Task-Affinity Consistency. IEEE Trans Med Imaging 42(3):594–605. https://doi.org/10.1109/TMI.2022.3213372

    Article  PubMed  Google Scholar 

  34. Shao Z, Han J, Marnerides D, Debattista K. Region-Object Relation-Aware Dense Captioning via Transformer. IEEE Trans Neural Netw Learning Syst. https://doi.org/10.1109/TNNLS.2022.3152990

  35. Kandati DR, Gadekallu TR (2022) Genetic clustered federated learning for COVID-19 detection. Electronics 11(17):2714

    Article  Google Scholar 

  36. Agrawal S, Sarkar S, Srivastava G, Maddikunta PKR, Gadekallu TR (2021) Genetically optimized prediction of remaining useful life. Sustain Comput Inform Syst 31:100565

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Singh.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Singh, A.K. Genetic algorithm based multi-resolution approach for de-speckling OCT image. Multimed Tools Appl 83, 31081–31102 (2024). https://doi.org/10.1007/s11042-023-16575-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16575-4

Keywords

Navigation