Skip to main content
Log in

Video splicing detection and localization based on multi-level deep feature fusion and reinforcement learning

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Splicing forgery refers to copying some regions of a video or an image to another video/image. Although image splicing detection has been studied for many years, video splicing detection has attracted relatively much less attention. In this paper, we proposed a novel framework for video splicing detection by modeling this forensic task as a video object segmentation problem. Based on the nature of this forgery operation, discontinuous noise distribution and object contours are adopted as traces to guide the localization results. The method consists of three modules: EXIF-consistency prediction, suspected region tracking, and semantic segmentation. To bridge the gap between sensor-level and semantic-level features, three modules in our framework are integrated for final tampered areas detection. Firstly, we use the EXIF-consistency prediction module to extract sensor-level traces from tampered areas. Then, we employ a deep reinforcement learning-based method for tracking suspected regions. Finally, a semantic segmentation module is adopted to localize the final results of the tampered regions. Compared with several state-of-the-art forensic approaches, our method demonstrates superiority in publicly available datasets. In terms of F1 score, our method achieves 0.623 in GRIP dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.grip.unina.it/download/prog/ForgedVideosDataset/

  2. https://www.youtube.com/channel/UCZuuu-iyZvPptbIUHT9tMrA

References

  1. Al-Qershi OM, Khoo BE (2013) Passive detection of copy-move forgery in digital images: State-of-the-art. Forensic Sci Int 231(1):284–295. https://doi.org/10.1016/j.forsciint.2013.05.027

    Article  Google Scholar 

  2. Al-Sanjary OI, Ahmed AA, Sulong G (2016) Development of a video tampering dataset for forensic investigation. Forensic Sci Int 266:565–572. https://doi.org/10.1016/j.forsciint.2016.07.013

    Article  Google Scholar 

  3. Bahrami K, Kot AC, Li L, Li H (2015) Blurred image splicing localization by exposing blur type inconsistency. IEEE Trans Inf Forensics Secur 10(5):999–1009. https://doi.org/10.1109/TIFS.2015.2394231

    Article  Google Scholar 

  4. Bammey Q, Gioi RGV, Morel JM (2020) An adaptive neural network for unsupervised mosaic consistency analysis in image forensics. In: Proceedings of the IEEE conference on computer vision and pattern recognition, p 14,194–14,204

  5. Bappy JH, Simons C, Nataraj L, Manjunath B, Roy-Chowdhury AK (2019) Hybrid LSTM and encoder-decoder architecture for detection of image forgeries. IEEE Trans Image Process 28(7):3286–3300. https://doi.org/10.1109/TIP.2019.2895466

    Article  MathSciNet  Google Scholar 

  6. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522. https://doi.org/10.1109/34.993558

    Article  Google Scholar 

  7. Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details:, Delving deep into convolutional nets. arXiv:1405.3531

  8. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2014) Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062

  9. Cozzolino D, Poggi G, Verdoliva L (2019) Extracting camera-based fingerprints for video forensics. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, p 130–137

  10. Cozzolino D, Verdoliva L (2020) Noiseprint: A CNN-based camera model fingerprint. IEEE Trans Inf Forensics Secur 15:144–159. https://doi.org/10.1109/TIFS.2019.2916364

    Article  Google Scholar 

  11. D’Avino D, Cozzolino D, Poggi G, Verdoliva L (2017) Autoencoder with recurrent neural networks for video forgery detection. Electron Imaging 2017(7):92–99. https://doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-330

    Article  Google Scholar 

  12. Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A (2015) The pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136. https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  13. Goel V, Weng J, Poupart P (2018) Unsupervised video object segmentation for deep reinforcement learning. In: Advances in neural information processing systems, p 5683–5694

  14. Hsu Y, Chang S (2010) Camera response functions for image forensics: an automatic algorithm for splicing detection. IEEE Trans Inf Forensics Secur 5(4):816–825. https://doi.org/10.1109/TIFS.2010.2077628

    Article  Google Scholar 

  15. Huh M, Liu A, Owens A, Efros AA (2018) Fighting fake news: Image splice detection via learned self-consistency. In: Proceedings of the european conference on computer vision, p 101–117

  16. Islam A, Long C, Basharat A, Hoogs A (2020) DOA-GAN: Dual-Order attentive generative adversarial network for image Copy-Move forgery detection and localization. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, p 4676–4685

  17. Jiang J, Song X (2016) An optimized higher order crf for automated labeling and segmentation of video objects. IEEE Trans Circuits Syst Video Technol 26(3):506–516. https://doi.org/10.1109/TCSVT.2015.2416557

    Article  Google Scholar 

  18. Johnston P, Elyan E (2019) A review of digital video tampering: from simple editing to full synthesis. Digit Investig 29:67–81. https://doi.org/10.1016/j.diin.2019.03.006

    Article  Google Scholar 

  19. Khoreva A, Benenson R, Hosang J, Hein M, Schiele B (2017) Simple does it: Weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, p 876–885

  20. Kniaz VV, Knyaz V, Remondino F (2019) The point where reality meets fantasy: Mixed adversarial generators for image splice detection. In: Advances in neural information processing systems, p 215–226

  21. Lin X, Wang S, Huang WJ, Liew AWC, Huang XS, Wu J (2019) Toward adaptive BDCT feature representation based image splicing measurement in smart cities. Measurement 139:61–69. https://doi.org/10.1016/j.measurement.2019.02.086

    Article  Google Scholar 

  22. Liu B, Pun CM (2018) Locating splicing forgery by fully convolutional networks and conditional random field. Signal Process. Image Commun 66:103–112. https://doi.org/10.1016/j.image.2018.04.011

    Article  Google Scholar 

  23. Liu B, Pun CM (2020) Exposing splicing forgery in realistic scenes using deep fusion network. Inf Sci 526:133–150. https://doi.org/10.1016/j.ins.2020.03.099

    Article  MathSciNet  Google Scholar 

  24. Liu B, Pun CM (2020) Locating splicing forgery by adaptive-SVD noise estimation and vicinity noise descriptor. Neurocomputing 387:172–187. https://doi.org/10.1016/j.neucom.2019.12.105

    Article  Google Scholar 

  25. Liu Y, Zhu X, Zhao X, Cao Y (2019) Adversarial learning for constrained image splicing detection and localization based on atrous convolution. IEEE Trans Inf Forensics Secur 14(10):2551–2566. https://doi.org/10.1109/TIFS.2019.2902826

    Article  Google Scholar 

  26. Lyu S, Pan X, Zhang X (2014) Exposing region splicing forgeries with blind local noise estimation. Int J Comput Vis 110(2):202–221. https://doi.org/10.1007/s11263-013-0688-y

    Article  Google Scholar 

  27. Perazzi F, Pont-Tuset J, McWilliams B, Van Gool L, Gross M, Sorkine-Hornung A (2016) A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, p 724–732

  28. Richao C, Gaobo Y, Ningbo Z (2014) Detection of object-based manipulation by the statistical features of object contour. Forensic Sci Int 236:164–169. https://doi.org/10.1016/j.forsciint.2013.12.022

    Article  Google Scholar 

  29. Rocha A, Scheirer W, Boult T, Goldenstein S (2011) Vision of the unseen: Current trends and challenges in digital image and video forensics. ACM Comput Surv 43(4):1–42. https://doi.org/10.1145/1978802.1978805

    Article  Google Scholar 

  30. Salloum R, Ren Y, Kuo CCJ (2018) Image Splicing Localization using a Multi-task Fully Convolutional Network (MFCN). J Vis Commun Image Represent 51:201–209. https://doi.org/10.1016/j.jvcir.2018.01.010

    Article  Google Scholar 

  31. Singh RD, Aggarwal N (2017) Detection of upscale-crop and splicing for digital video authentication. Digit Investig 21:31–52. https://doi.org/10.1016/j.diin.2017.01.001

    Article  Google Scholar 

  32. Singh RD, Aggarwal N (2018) Video content authentication techniques: a comprehensive survey. Multimedia Systems 24(2):211–240. https://doi.org/10.1007/s00530-017-0538-9

    Article  Google Scholar 

  33. Sun P, Lang Y, Fan S, Shen Z, Liu L, Shan D, Peng S (2018) Exposing splicing forgery based on color temperature estimation. Forensic Sci Int 289:1–11. https://doi.org/10.1016/j.forsciint.2018.04.049

    Article  Google Scholar 

  34. Vecchio G, Palazzo S, Giordano D, Rundo F, Spampinato C (2020) MASK-RL: Multiagent video object segmentation framework through reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, p 1–13. https://doi.org/10.1109/TNNLS.2019.2963282

  35. Verdoliva L (2020) Media forensics and deepfakes: an overview. IEEE J Sel Top Signal Process 14(5):910–932. https://doi.org/10.1109/JSTSP.2020.3002101

    Article  Google Scholar 

  36. Wang P, Liu F, Yang C, Luo X (2018) Blind forensics of image gamma transformation and its application in splicing detection. J Vis Commun Image Represent 55:80–90. https://doi.org/10.1016/j.jvcir.2018.05.020

    Article  Google Scholar 

  37. Wang W, Shen J, Yang R, Porikli F (2018) Saliency-aware video object segmentation. IEEE Trans Pattern Anal Mach Intell 40(1):20–33. https://doi.org/10.1109/TPAMI.2017.2662005

    Article  Google Scholar 

  38. Wang X, Wang Y, Lei J, Li B, Wang Q, Xue J (2022) Coarse-to-fine-grained method for image splicing region detection. Pattern Recogn 122(108):347. https://doi.org/10.1016/j.patcog.2021.108347

    Google Scholar 

  39. Warif NBA, Wahab AWA, Idris MYI, Ramli R, Salleh R, Shamshirband S, Choo KKR (2016) Copy-move forgery detection: Survey, challenges and future directions. J Netw Comput Appl 75:259–278. https://doi.org/10.1016/j.jnca.2016.09.008

    Article  Google Scholar 

  40. Wei Y, Wang Z, Xiao B, Liu X, Yan Z, Ma J (2020) Controlling neural learning network with multiple scales for image splicing forgery detection, ACM Transactions on Multimedia Computing, Communications and Applications 16(4). https://doi.org/10.1145/3408299

  41. Wu Y, Abd-Almageed W, Natarajan P (2017) Deep matching and validation network: an end-to-end solution to constrained image splicing localization and detection. In: Proceedings of the ACM International Conference on Multimedia, p 1480–1502

  42. Wu Y, Abd-Almageed W, Natarajan P (2019) Mantra-net: Manipulation tracing network for detection and localization of image forgeries with anomalous features. In: Proceedings of the IEEE conference on computer vision and pattern recognition, p 9543–9552

  43. Xiao B, Wei Y, Bi X, Li W, Ma J (2020) Image splicing forgery detection combining coarse to refined convolutional neural network and adaptive clustering. Inf Sci 511:172–191. https://doi.org/10.1016/j.ins.2019.09.038

    Article  MathSciNet  Google Scholar 

  44. Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision

  45. Yang J, Price B, Shen X, Lin Z, Yuan J (2016) Fast appearance modeling for automatic primary video object segmentation. IEEE Trans Image Process 25(2):503–515. https://doi.org/10.1109/TIP.2015.2500820

    Article  MathSciNet  Google Scholar 

  46. Yao R, Lin G, Xia S, Zhao J, Zhou Y (2020) Video object segmentation and tracking: a survey. ACM Trans Intell Syst Technol 11(4):1–47. https://doi.org/10.1145/3391743

    Article  Google Scholar 

  47. Yun S, Choi J, Yoo Y, Yun K, Choi JY (2018) Action-driven visual object tracking with deep reinforcement learning. IEEE Trans Neural Netw Learn Syst 29(6):2239–2252. https://doi.org/10.1109/TNNLS.2018.2801826

    Article  MathSciNet  Google Scholar 

  48. Zhao X, Wang S, Li S, Li J (2015) Passive Image-Splicing detection by a 2-D noncausal markov model. IEEE Trans Circuits Syst Video Technol 25(2):185–199. https://doi.org/10.1109/TCSVT.2014.2347513

    Article  Google Scholar 

  49. Zhou P, Han X, Morariu VI, Davis LS (2018) Learning rich features for image manipulation detection. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, p 1053–1061

  50. Zhu N, Li Z (2018) Blind image splicing detection via noise level function. Signal Process Image Commun 68:181–192. https://doi.org/10.1016/j.image.2018.07.012

    Article  Google Scholar 

  51. Zhuo T, Cheng Z, Zhang P, Wong Y, Kankanhalli M (2020) Unsupervised online video object segmentation with motion property understanding. IEEE Trans Image Process 29:237–249. https://doi.org/10.1109/TIP.2019.2930152

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 62002177), Tianjin Natural Science Foundation, China (Grant No. 21JCYBJC00110 and 19JCQNJC00300), and Fundamental Research Funds for the Central Universities of Nankai University (Grant No. 63201192, 63211116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., He, Z., Xu, J. et al. Video splicing detection and localization based on multi-level deep feature fusion and reinforcement learning. Multimed Tools Appl 81, 40993–41011 (2022). https://doi.org/10.1007/s11042-022-13001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13001-z

Keywords

Navigation