Skip to main content
Log in

High capacity reversible and secured data hiding in images using interpolation and difference expansion technique

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Data hiding is a noteworthy research topic in digital technology for years. Reversible data hiding (RDH) technique plays a vital role for confirming security of the digital transmissions. A new 2-layer secure, high capacity reversible data hiding technique has been proposed, using the concept of interpolation based data hiding and difference expansion method. Unlike, state-of-the art interpolation based RDH techniques, the security has been enhanced in the proposed technique by concealing the data into the image pixels in non-sequential manner. This technique offers high-capacity data hiding, by considering the maximum difference between neighboring pixels without compromising on quality of the images. It can embed up to 3.19 bpp in Baboon image which is better than the other existing state-of-the art interpolation based RDH (IRDH) techniques. The proposed technique is sustainable against the series of tests provided by standard StirMark Benchmark 4.0 analysis. It withstands the steganalysis attacks, viz., StegExpose as a measure of security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arham A, Nugroho HA, Adji TB (2017) Multiple layer data hiding scheme based on difference expansion of quad. Signal Process 137:52–62. https://doi.org/10.1016/j.sigpro.2017.02.001

    Article  Google Scholar 

  2. Boehmm E (2014) Stegexpose: a tool for detecting LSB steganography. https://github.com/b3dk7/StegExpose

  3. Chang JC, Lu YZ, Wu HL (2017) A separable reversible data hiding scheme for encrypted JPEG bitstreams. Signal Process 133:135–143. https://doi.org/10.1016/j.sigpro.2016.11.003

    Article  Google Scholar 

  4. Chao RM, Wu HC, Lee CC, Chu YP (2009) A novel image data hiding scheme with diamond encoding. EURASIP J Inf Secur 2009(1):1–9. https://doi.org/10.1155/2009/658047

    Google Scholar 

  5. Chen WJ, Chang CC, Le THN (2010) High payload steganography mechanism using hybrid edge detector. Expert Syst Appl 37(4):3292–3301. https://doi.org/10.1016/j.eswa.2009.09.050

    Article  Google Scholar 

  6. Das S, Muhammad K, Bakshi S, Mukherjee I, Sa PK, Sangaiah AK, Bruno A (2019) Lip biometric template security framework using spatial steganography. Pattern Recognit Lett 126:102–110. https://doi.org/10.1016/j.patrec.2018.06.026

    Article  Google Scholar 

  7. Hu J, Li T (2015) Reversible steganography using extended image interpolation technique. Comput Electr Eng 46:447–455. https://doi.org/10.1016/j.compeleceng.2015.04.014

    Article  Google Scholar 

  8. Images: University of Southern California. The USC-SIPI Image Database, 2019 Available from: http://sipi.usc.edu/database/database.php

  9. Jana B, Giri D, Mondal SK (2018) Dual image based reversible data hiding scheme using (7, 4) hamming code. Multimed Tools Appl 77(1):763–785. https://doi.org/10.1007/s11042-016-4230-4

    Article  Google Scholar 

  10. Jung KH, Yoo KY (2009) Data hiding method using image interpolation. Comput Stand Interfaces 31(2):465–470. https://doi.org/10.1016/j.csi.2008.06.001

    Article  Google Scholar 

  11. Jung KH, Yoo KY (2009) Improved exploiting modification direction method by modulus operation. Int J Signal Process Image Process Pattern 2(1):79–87

    Google Scholar 

  12. Kim C (2014) Data hiding by an improved exploiting modification direction. Multimed Tools Appl 69(3):569–584. https://doi.org/10.1007/s11042-012-1114-0

    Article  Google Scholar 

  13. Kim C, Shin D, Shin D, Zhang X (2011) Improved steganographic embedding exploiting modification direction in multimedia communications. In: FTRA international conference on secure and trust computing, data management, and application. Springer, pp 130–138. https://doi.org/10.1007/978-3-642-22339-6-16

  14. Lee CF, Huang YL (2012) An efficient image interpolation increasing payload in reversible data hiding. Expert Syst Appl 39(8):6712–6719. https://doi.org/10.1016/j.eswa.2011.12.019

    Article  Google Scholar 

  15. Lee CF, Weng CY, Chen KC (2017) An efficient reversible data hiding with reduplicated exploiting modification direction using image interpolation and edge detection. Multimed Tools Appl 76(7):9993–10016. https://doi.org/10.1007/s11042-016-3591-z

    Article  Google Scholar 

  16. Lee CF, Weng CY, Kao CY (2019) Reversible data hiding using lagrange interpolation for prediction-error expansion embedding. Soft Comput 23 (19):9719–9731. https://doi.org/10.1007/s00500-018-3537-7

    Article  Google Scholar 

  17. Li D, Deng L, Gupta BB, Wang H, Choi C (2019) A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Inf Sci 479:432–447

    Article  Google Scholar 

  18. Lin IC, Lin YB, Wang CM (2009) Hiding data in spatial domain images with distortion tolerance. Comput Stand Interfaces 31(2):458–464. https://doi.org/10.1016/j.csi.2008.05.010

    Article  MathSciNet  Google Scholar 

  19. Liu N, Amin P, Subbalakshmi K (2007) Security and robustness enhancement for image data hiding. IEEE Trans Multimed 9(3):466–474. https://doi.org/10.1109/TMM.2006.888005

    Article  Google Scholar 

  20. Liu W, Yin X, Lu W, Zhang J, Zeng J, Shi S, Mao M (2020) Secure halftone image steganography with minimizing the distortion on pair swapping. Signal Process 167(107):287. https://doi.org/10.1016/j.sigpro.2019.107287

    Google Scholar 

  21. Lu TC (2018) Interpolationbased hiding scheme using the modulus function and re-encoding strategy. Signal Process 142:244–259. https://doi.org/10.1016/j.sigpro.2017.07.025

    Article  Google Scholar 

  22. Luo J, Konofagou EE (2010) A fast normalized cross-correlation calculation method for motion estimation. IEEE Trans Ultrason Ferroelectr Freq Control 57(6):1347–1357. https://doi.org/10.1109/TUFFC.2010.1554

    Article  Google Scholar 

  23. Mohammad AA, Al Haj A, Farfoura M (2019) An improved capacity data hiding technique based on image interpolation. Multimed Tools Appl 78 (6):7181–7205. https://doi.org/10.1007/s11042-018-6465-8

    Article  Google Scholar 

  24. Paul G, Davidson I, Mukherjee I, Ravi S (2017) Keyless dynamic optimal multi-bit image steganography using energetic pixels. Multimed Tools Appl 76(5):7445–7471. https://doi.org/10.1007/s11042-016-3319-0

    Article  Google Scholar 

  25. Petitcolas FA, Anderson RJ, Kuhn MG (1998) Attacks on copyright marking systems. In: International workshop on information hiding. https://doi.org/10.1007/3-540-49380-8-16. Springer, pp 218–238

  26. Provos N, Honeyman P (2001) Detecting steganographic content on the internet. Tech. rep. Center for Information Technology Integration

  27. Qershi AOM, Khoo BE (2011) High capacity data hiding schemes for medical images based on difference expansion. J Syst Softw 84(1):105–112. https://doi.org/10.1016/j.jss.2010.08.055

    Article  Google Scholar 

  28. Shabir PA, Ahad F, Sheikh JA, Loan NA, Bhat GM (2017) A new reversible and high capacity data hiding technique for E-healthcare applications. Multimed Tools Appl 76(3):3943–3975. https://doi.org/10.1007/s11042-016-4196-2

    Article  Google Scholar 

  29. Shaik A, Thanikaiselvan V (2019) High capacity reversible data hiding using 2D parabolic interpolation. Multimed Tools Appl 78(8):9717–9735. https://doi.org/10.1007/s11042-018-6544-x

    Article  Google Scholar 

  30. Singh AK (2020) Data hiding: current trends, innovation and potential challenges. In: ACM transactions on multimedia computing, communications, and applications (TOMM). https://doi.org/10.1145/3382772

  31. Su Q, Zhang X, Wang G (2020) An improved watermarking algorithm for color image using Schur decomposition. Soft Comput 24(1):445–460. https://doi.org/10.1007/s00500-019-03924-5

    Article  Google Scholar 

  32. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896. https://doi.org/10.1109/TCSVT.2003.815962

    Article  Google Scholar 

  33. Toet A, Hogervorst MA (2003) Performance comparison of different gray-level image fusion schemes through a universal image quality index. In: Signal processing, sensor fusion, and target recognition XII, vol 5096. International Society for Optics and Photonics, pp 552–561

  34. Wahed MA, Nyeem H (2019) Reversible data hiding with interpolation and adaptive embedding. Multimed Tools Appl 78(8):10795–10819. https://doi.org/10.1007/s11042-018-6616-y

    Article  Google Scholar 

  35. Wang W (2020) A reversible data hiding algorithm based on bidirectional difference expansion. Multimed Tools Appl 79(9):5965–5988. https://doi.org/10.1007/s11042-019-08255-z

    Article  Google Scholar 

  36. Wang J, Ni J, Zhang X, Shi YQ (2016) Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans Cybern 47 (2):315–326. https://doi.org/10.1109/TCYB.2015.2514110

    Google Scholar 

  37. Weng S, Shi Y, Hong W, Yao Y (2019) Dynamic improved pixel value ordering reversible data hiding. Inf Sci 489:136–154. https://doi.org/10.1016/j.ins.2019.03.032

    Article  Google Scholar 

  38. Xu WN, Chang CC, Chen TS, Wang LM (2016) An improved least-significant-bit substitution method using the modulo three strategy. Displays 42:36–42. https://doi.org/10.1016/j.displa.2016.03.002

    Article  Google Scholar 

  39. Yang CH, Weng CY, Wang SJ, Sun HM (2008) Adaptive data hiding in edge areas of images with spatial LSB domain systems. IEEE Trans Inf Forensics Secur 3(3):488–497. https://doi.org/10.1109/TIFS.2008.926097

    Article  Google Scholar 

  40. Zhang X, Long J, Wang Z, Cheng H (2016) Lossless and reversible data hiding in encrypted images with public-key cryptography. IEEE Trans Circ Syst Video Technol 26(9):1622–1631. https://doi.org/10.1109/TCSVT.2015.2433194

    Article  Google Scholar 

  41. Zhang X, Sun Z, Tang Z, Yu C, Wang X (2017) High capacity data hiding based on interpolated image. Multimed Tools Appl 76(7):9195–9218. https://doi.org/10.1007/s11042-016-3521-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imon Mukherjee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P.C., Mukherjee, I. & Chatterji, B.N. High capacity reversible and secured data hiding in images using interpolation and difference expansion technique. Multimed Tools Appl 80, 3623–3644 (2021). https://doi.org/10.1007/s11042-020-09341-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09341-3

Keywords

Navigation