Skip to main content
Log in

Pedestrian localisation in the typical indoor environments

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The world is adopting complete wireless infrastructure to cover small size buildings as well as large geographical regions. Indoor Positioning System (IPS) is used to locate stationary as well as non-stationary objects in the wireless domain. The indoor localisation of a pedestrian remains an open problem in the noisy environment. Researchers are trying to develop low-complexity approach without depending on building infrastructure to achieve accurate and reliable results for pedestrian localisation in noisy environment. We are proposed the problem associated with improving localisation scalability and accuracy by considering the noisy environment. Our propose methodology exhibits robustness and portability with respect to the number of experiments in noisy environment with the help of captured signal strength. The propose methodology is easily applied in various indoor environments (i.e. different building designs) to locate the stationary and non-stationary object. The collected multimodal data of non-stationary targets in the noisy environment is required to enhance further. The collected multimodal data is used to explore specific movement of the pedestrian in the noisy environment. We consider numerical methods to make the shape of hot-spot contour for a specific target. Principal Component Analysis (PCA) based data science is used to obtain the predominant components in the collected information and make a compact contour in the noisy environment. The generated model depicts a highly sensitive region in the noisy environment due to the presence of thick walls inside the building and multipath fading. Our novel methodology exhibits efficient localisation of the non-stationary target or precisely identifies the moving object, on the floor of a multi- storey building. Our novel approach enhances the technique to improve surveillance and security for the noisy indoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Boyd RW (2011) Location system for wireless local area network (WLAN) using RSSI and time difference of arrival (TDOA) processing. US patent No US7899006B2

  2. Brooks TTJ et al (2005) A review of position tracking methods. In: Proceeding: 1st international conference on sensing technology, pp 54–59

  3. Catovic A, Sahinoglu Z (2004) The Cramer-Rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes. IEEE Commun Lett 8(10). https://doi.org/10.1109/LCOMM.2004.835319

  4. Collin J, Mezentsev O, Lachapelle G (2003) Indoor positioning system using accelerometry and high accuracy heading sensors. In: Proceeding: of GPS/GNSS 2003, pp 1–7

  5. Correia N, Alves L, Correia H, Romero L, Morgado C, Soares L, Cunha JC, Romão T, Dias AE, Jorge JA (2005) In story: a system for mobile information access, storytelling and gaming activities in physical spaces. In: Proceedings: ACM ACE’05, pp 102–109. https://doi.org/10.1145/1178477.1178491

  6. Dardari D, Closas P, Djuric PM (2015) Indoor tracking: theory, methods, and technologies. IEEE Trans Veh Technol 64(4):1263–1278. https://doi.org/10.1109/TVT.2015.2403868

    Article  Google Scholar 

  7. Dizdarevic V, Witrisal K (2006) On impact of topology and cost function on LSE position determination in wireless networks. In: Proceedings: 3rd workshop on positioning, navigation, and communication, pp 129–138

  8. Dong K, Ling Z, Xia X, Ye H, Wu W, Yang M Dealing with insufficient location fingerprints in Wi-fi based indoor location fingerprinting. Wirel Commun Mob Comput 2017, Article ID 1268515:1–11. https://doi.org/10.1155/2017/1268515

  9. Dou F, Lu J, Wang Z et al (2018) Top-down indoor localization with Wi-fi fingerprints using deep Q-network. In: Proceeding IEEE 15th international conference on Mobile ad hoc and sensor systems (MASS), pp 166–174. https://doi.org/10.1109/MASS.2018.00037

  10. Ekahau, Inc. (2005) Ekahau Positioning Engine 3.1. http://www.ekahau.com/file.php?id=129

  11. Foy WH (1976) Position-location solutions by Taylor-series estimation. IEEE Trans Aerosp Electron Syst AES-12(2):187–194. https://doi.org/10.1109/TAES.1976.308294

    Article  Google Scholar 

  12. Gezici S, Tian Z, Giannakis GB, Kobayashi H, Molisch AF, Poor HV, Sahinoglu Z (2005) Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Process Mag 22(4):70–84. https://doi.org/10.1109/MSP.2005.1458289

    Article  Google Scholar 

  13. Gezici S, Guvenc I, Sahinoglu Z (2008) On the performance of linear least-squares estimation in wireless positioning systems. In: Proceeding: IEEE ICC'08, pp 4203–4208. https://doi.org/10.1109/ICC.2008.789

  14. Gu Y, Lo A, Niemegeers I (2009) A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials 11(1):13–32. https://doi.org/10.1109/SURV.2009.090103

    Article  Google Scholar 

  15. Guerra A et al (2018) Single-anchor localisation and orientation performance limits using massive arrays: MIMO vs. beamforming. IEEE Trans Wirel Commun 17(8):5241–5255. https://doi.org/10.1109/TWC.2018.2840136

    Article  Google Scholar 

  16. Gupta GS et al (2005) Real-time identification and predictive control of fast mobile robots using global vision sensing. IEEE Trans Instrum Meas 54(1):200–214. https://doi.org/10.1109/TIM.2004.840223

    Article  Google Scholar 

  17. Guvenc I, Gezici S, Watanabe F, Inamura H (2008) Enhancements to linear least squares localisation through reference selection and ML estimation. In: Proceeding IEEE WCNC 2008, pp 284–289. https://doi.org/10.1109/WCNC.2008.55

  18. He S, Chan S-HG (2016) Wi-fi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Communications Surveys and Tutorials 18(1):466–490. https://doi.org/10.1109/COMST.2015.2464084

    Article  Google Scholar 

  19. He S, Chan S-HG, Yu L, Liu N (2015) Fusing Noisy fingerprints with distance bounds. In: Proceeding: 2015 IEEE conference on computer communications (INFOCOM), pp 2506–2514. https://doi.org/10.1109/INFOCOM.2015.7218640

  20. Hilsenbeck S et al (2014) Graph-based data fusion of pedometer and WiFi measurements for mobile indoor positioning. In: Proceeding: ACM – UbiComp, vol 14, pp 147–158. https://doi.org/10.1145/2632048.2636079

  21. Huang FDJLZWXXJBC-H (2018) Top-down indoor localization with Wi-fi fingerprints using deep Q-network. In: Proceeding : IEEE 15th international conference on Mobile ad-hoc and sensor systems, pp 166–174. https://doi.org/10.1109/MASS.2018.00037

  22. Huang H, Savkin AV, Ding M, Kaafar MA (2019) Optimized deployment of drone base station to improve user experience in cellular networks. Journal of Computer Network 144(15):49–58. https://doi.org/10.1016/j.jnca.2019.07.002

    Article  Google Scholar 

  23. Ibach P, Stantchev V, Lederer F, Weiß A, Herbst T, Kunze T (2005) WLAN-based asset tracking for warehouse management. In: Proceeding: IADIS international conference e-commerce, pp 1–9. https://doi.org/10.13140/RG.2.1.1133.8001

  24. Kanrar S (2012) Parametric estimation of handoff. In: IEEE proceeding national conference on computing and communication systems (NCCCS), pp 1–5. https://doi.org/10.1109/NCCCS.2012.6412991

  25. Kanrar S (2016) Dimension compactness in speaker identification. In: Proceedings of the international conference on informatics and analytics (ICIA-16), article no.18, pp 1–6. https://doi.org/10.1145/2980258.2980296

  26. Kanrar S, Mandal NK (2014) Dynamic page replacement at the cache memory for the video on demand server. Advanced Computing, Networking and Informatics 2:461–469. https://doi.org/10.1007/978-3-319-07350-7_51

    Article  Google Scholar 

  27. Kanrar S, Mandal PK (2015) Detect mimicry by enhancing the speaker recognition system,” Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing 339:21–31. https://doi.org/10.1007/978-81-322-2250-7_3

    Article  Google Scholar 

  28. Khoury HM, Kamat VR (2009) Evaluation of position tracking technologies for user localisation in indoor construction environments. Autom Constr 18(4):444–457. https://doi.org/10.1016/j.autcon.2008.10.011

    Article  Google Scholar 

  29. Kim H, Lee W, Bae M, Kim H (2017) Wi-fi seeker: a link and load aware AP selection algorithm. IEEE Trans Mob Comput 16(8):2366–2378. https://doi.org/10.1109/TMC.2016.2618790

    Article  Google Scholar 

  30. King T, Kopf S, Haenselmann T, Lubberger C, Effelsberg W (2006) COMPASS: a probabilistic indoor positioning system based on 802.11 and digital compasses. In: Proceedings: ACM -WiNTECH’06, pp 34–40. https://doi.org/10.1145/1160987.1160995

  31. Koo J, Cha H (2011) Localizing WiFi access points using signal strength. IEEE Commun Lett 15(2):187–189. https://doi.org/10.1109/LCOMM.2011.121410.101379

    Article  Google Scholar 

  32. Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Willy Publisher, ISBN: 978-1-118-67557-1

  33. Li D, Wong KD, Hu YH, Sayeed AM (2002) Detection, classification, and tracking of targets. IEEE Signal Process Mag 19(2):17–29. https://doi.org/10.1109/79.985674.1

    Article  Google Scholar 

  34. Li B, Gallagher T, Dempster AG, Rizos C (2012) How feasible is the use of magnetic field alone for indoor positioning? In: Proceeding: international conference on indoor positioning and indoor navigation (IPIN), pp 1–9. https://doi.org/10.1109/IPIN.2012.6418880

  35. Li D, Xiaotang et al (2017) Learning deep context-aware features over body and latent parts for person re-identification. In: In proceeding IEEE (CVPR), pp 388–397. https://doi.org/10.1109/CVPR.2017.49

  36. Liao S-H, Chu P-H, Hsiao P-Y (2012) Data mining techniques and applications–a decade review from 2000 to 2011. Expert Syst Appl 39(12):11303–11311. https://doi.org/10.1016/j.eswa.2012.02.063

    Article  Google Scholar 

  37. Lin K (2013) Research on adaptive target tracking in vehicle sensor networks. J Netw Comput Appl 36(5):1316–1323. https://doi.org/10.1016/j.jnca.2012.01.001

    Article  Google Scholar 

  38. Liu H, Darabi H, Banerjee P, Liu J (2007) Survey of wireless indoor positioning techniques and systems. IEEE Trans Syst Man Cybern Part C Appl Rev 37(6):1067–1080. https://doi.org/10.1109/TSMCC.2007.905750

    Article  Google Scholar 

  39. Luo W et al (2018) Positioning and guiding educational robots by using fingerprints of WiFi and RFID array. EURASIP J Wirel Commun Netw Article number: 170:1–11. https://doi.org/10.1186/s13638-018-1183-5

    Article  Google Scholar 

  40. Meng Z, Song F et al (2020) Gait recognition for co-existing multiple people using millimeter wave sensing. In: Association for the Advancement of artificial intelligence (AAAI), pp 1–8

  41. Parker R, Valaee S (2007) Vehicular node localization using received- signal-strength Indicator. IEEE Trans Veh Technol 56(6):3371–3380. https://doi.org/10.1109/TVT.2007.907687

    Article  Google Scholar 

  42. Qian J et al (2013) An improved indoor localization method using smartphone inertial sensors. In: Proceeding international conference on indoor positioning and indoor navigation, pp 1–7. https://doi.org/10.1109/IPIN.2013.6817854

  43. Ramnath S et al (2017) IoT based localization and tracking. In: Proceeding IoT and application (ICIOT), pp 1–4. https://doi.org/10.1109/ICIOTA.2017.8073629

  44. Randell C, Muller H (2001) Low cost indoor positioning system. In: Proceeding: UbiComp, LNCS 2201, pp 42–48. https://doi.org/10.1007/3-540-45427-6_5

  45. Rodriguez LJ (2016) US Patent Indoor Positioning System, US 20160330591 A1

  46. Saha S et al (2003) Location determination of a mobile device using IEEE 802.11b access point signals. In: Proceeding IEEE WCNC, pp 1987–1992. https://doi.org/10.1109/WCNC.2003.1200692

  47. Shi G, Ming Y (2016) Survey of indoor positioning systems based on ultra-wideband (UWB) technology. Wireless Communications, Networking and Applications 348:1269–1278. https://doi.org/10.1007/978-81-322-2580-5_115

    Article  Google Scholar 

  48. So HC et al (2008) Closed-form formulae for time-difference-of-arrival estimation. IEEE Trans Signal Process 56(6):2614–2620. https://doi.org/10.1109/TSP.2007.914342

    Article  MathSciNet  MATH  Google Scholar 

  49. Soumen K, Mandal NK (2017) Video traffic analytics for large scale surveillance. Multimedia Tools Application 76(11):13315–13342. https://doi.org/10.1007/s11042-016-3752-0

    Article  Google Scholar 

  50. Sun W, Xue M, Yu H, Tang H, Lin A (2018) Augmentation of fingerprints for indoor WiFi localization based on Gaussian process regression. IEEE Trans Veh Technol 67(11):10896–10905. https://doi.org/10.1109/TVT.2018.2870160

    Article  Google Scholar 

  51. Sung K, Lee DK, Kim H (2018) Indoor pedestrian localization using iBeacon and improved Kalman filter. Sensors(Basel) 18(6). https://doi.org/10.3390/s18061722

  52. Tian Z et al (2014) Pedestrian dead reckoning for MARG navigation using a smartphone. EURASIP Journal on Advances in Signal Processing, Article number: 65:1–9. https://doi.org/10.1186/1687-6180-2014-65

    Article  Google Scholar 

  53. Velastin SA, Lo B, Sun J (2004) A flexible communications protocol for a distributed surveillance system. J Netw Comput Appl 27(4):221–253. https://doi.org/10.1016/j.jnca.2003.11.001

    Article  Google Scholar 

  54. Wang B, Tang S, Zhao R, Wu L, Cen Y (2015) Pedestrian detection based on region proposal fusion. In: Proceeding IEEE 17th international workshop on multimedia signal processing (MMSP), pp 1–6. https://doi.org/10.1109/MMSP.2015.7340847

  55. Want R, Hopper A (1992) Active badges and personal interactive computing objects. IEEE Transaction of Consumer Electronics 38(1):10–20. https://doi.org/10.1109/30.125076

    Article  Google Scholar 

  56. Want R, Hopper A, Falcao V, Gibbons J (1992) The active badge location system. ACM Trans Inf Syst 10(1):91–102. https://doi.org/10.1145/128756.128759

    Article  Google Scholar 

  57. Woodman O, Harle R (2008) Pedestrian localisation for indoor environments. In: Proceeding : ACM UbiComp '08, pp 114–123. https://doi.org/10.1145/1409635.1409651

  58. Wu L, Xia T, Wan J, Zhang Y, Li J (2012) RGB-D based multi-attribute people search in intelligent visual surveillance. In: Proceeding international conference on multimedia modeling, pp 750–760. https://doi.org/10.1007/978-3-642-27355-1_79

  59. Yiu S, Dashti M, Claussen H, Perez-Cruz F (2017) Wireless RSSI fingerprinting localization. Signal Process 131(C):235–244. https://doi.org/10.1016/j.sigpro.2016.07.005

    Article  Google Scholar 

  60. Yu J, Venkataramani T, Zhao X, Jia Z (2012) Bootstrapped learning of WiFi access point in hybrid positioning system. In: Proceedings ION GNSS, pp 960–966

  61. Zhang W, Liu K, Zhang W, Youmei Z, Jason G (2016) Deep neural networks for wireless localization in indoor and outdoor environments. Neurocomputing 194(19):279–287. https://doi.org/10.1016/j.neucom.2016.02.055

    Article  Google Scholar 

  62. Zhgen H et al (2018) Exact line of-sight probability for channel modeling in typical indoor environments. IEEE Antennas and Wireless Propagation Letters 17(7):1359–1362. https://doi.org/10.1109/LAWP.2018.2846748

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Kanrar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanrar, S., Dawar, K. & Pundir, A. Pedestrian localisation in the typical indoor environments. Multimed Tools Appl 79, 27833–27866 (2020). https://doi.org/10.1007/s11042-020-09291-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09291-w

Keywords

Navigation