Skip to main content
Log in

Data hiding in virtual bit-plane using efficient Lucas number sequences

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a steganography technique using the concept of virtual bit-plane. Purposely another number system has been used in this technique instead of binary to hide the target data. After that embedding of target data is done on different bit-planes. Here for conversion, Lucas Number system is used. The Lucas sequence is almost similar to Fibonacci, instead 1 and 2 it starts with 2 and 1. It helps to increase robustness by embedding data at the second bit-plane with a slight change of ±1. Here for embedding target data, Blue and Green channels of RGB color image are used. Red channel is used as indicator for proper extraction of target data at the receiver side. The indicator is used to avoid lexicographically higher order to consider for number representation. It may seem that the use of two channels for embedding reduces the capacity. But it does not really happen. The skip of pixel to follow Zekendrof’s rule for handling redundant representation by other existing methods, make the proposed one more capacitive than other. In order to establish its efficiency over the state-of-art-works the proposed method is analyzed by using different parameters and compared with relevant techniques. It has been found from the tested result that the proposed one is better. The stego quality of the method is also maintained along with the robustness and capacity. The PSNR of the proposed method is within the acceptable range, even in the highest embedding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7a
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. A. Abdulla, S. A. Jassim , H. Sellahewa, Efficient high-capacity steganography technique, proceedings of SPIE 8755 Mobile multimedia/image processing, security, and applications 8755 (2013).

  2. A. A. Abdulla, H. Sellahewa, S. A. Jassim, Steganography based on pixel intensity value decomposition, proceedings of SPIE 9120 Mobile multimedia/image processing, security, and applications 9120 (2014).

  3. A. A. Abdulla, H. Sellahewa, S. A. Jassim, Stego Quality Enhancement by Message Size Reduction and Fibonacci Bit-Plane Mapping, Security Standardisation Research (SSR 2014), Lecture notes in computer science 8893, Springer, Cham, (2014) 151–166.

  4. Andreas W, Pfitzmann A (1999) Attacks on Steganographic systems: breaking the Steganographic utilities EzStego, Jsteg, Steganos, and S-tools–and some lessons learned. Third International Workshop on Information Hiding:61–76

  5. N. G. Aroukatos, K. Mane, S. Zimeras, F. Georgiakodis, Data hiding techniques in steganography using Fibonacci and Catalan numbers, Proceedings Ninth International Conference on Information Technology- New Generations, USA, 2012.

  6. Aroukatos NG, Mane K, Zimeras S, Georgiakodis F (2014) Techniques in image steganography using famous number sequences. International Journal of Advanced Computer Science 4(12):544–549

    Google Scholar 

  7. F. Battisti, M. Carli, A. Neri, K. Egiaziarian, A generalized Fibonacci LSB data hiding technique, proceedings third international conference on computers and devices for communication (CODEC 06), India 2006.

  8. Brown JL Jr (1969) Unique representation of integers as sums of distinct Lucas numbers. Fib Quart 7:243–252

    MathSciNet  MATH  Google Scholar 

  9. Cachin C (2004) An Informationtheoretic model for steganography. Inf Comput 192(1):41–56

    Article  Google Scholar 

  10. W. Cao, Y. Zhou, C. L. P. Chen, A new image encryption algorithm using truncated P-Fibonacci bit-planes, proceedings IEEE international conference on systems, man, and cybernetics, South Korea (2012) 1185–1188.

  11. Carlitz L, Scoville R, Hoggatt VE Jr (1972) Fibonacci Representations. The Fibonacci Quarterly 10(1):l–28

    MathSciNet  MATH  Google Scholar 

  12. Cha SH, Srihari SN (2002) On measuring the distance between histograms. Pattern Recognition, the Journal of Pattern Recognition Society 35:1355–1370

    Article  Google Scholar 

  13. Chan CK, Cheng LM (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37:469–474

    Article  Google Scholar 

  14. Cheddad A, Condell J, Curran K, Kevitt PM (2010) Digital image steganography: survey and analysis of current methods. Elsevier Signal Processing 90:727–752

    Article  Google Scholar 

  15. R. Crandall, C. Pomerance, Prime numbers: a computational perspective (2nd ed.), Berlin, New York Springer-Verlag (2005).

  16. S. Dey, A. Abraham, S. Sanyal , An LSB data hiding technique using natural numbers, proceedings third IEEE international conference on intelligent information hiding and multimedia signal processing (IIHMSP07), Taiwan, IEEE computer society press, USA, (2007) 473–476.

  17. S. Dey, A. Abraham, S. Sanyal, An LSB data hiding technique using prime numbers, third international symposium on information assurance and security, Manchester, United Kingdom, IEEE computer society press, USA, (2007) 101–106.

  18. Dey S, Al-Qaheri H, Sane S, Sanyal S (2010) A note on the bounds for the generalized Fibonacci-p-sequence and its application in data hiding. Int J Comput Sci Appl 7(4):1–15

    Google Scholar 

  19. Dumitrescu S, Wu X, Wang Z (2003) Detection of LSB steganography via sample pair analysis. IEEE Trans Signal Process 51(7):1995–2007

    Article  Google Scholar 

  20. D. Dumitrescu, I. M. Stan, E. Simion, Steganography techniques, IACR Cryptology ePrint Archive (2017) pp. 341–361.

  21. Fridrich J, Kodovsk J (2012) Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security 7(3):868–882

    Article  Google Scholar 

  22. V. E. Hoggatt, Jr., Fibonacci and Lucas numbers, Fibonacci Association Publication, 1969.

  23. Hoggatt VE Jr, Bicknell-Johnson M (1982) Lexicographic ordering and Fibonacci representations. The Fibonacci Quarterly 20(3):193–218

    MathSciNet  MATH  Google Scholar 

  24. Hussain M, Wahab AWA, Javed N, Jung KH (2016) Hybrid data hiding scheme using right-most digit replacement and adaptive least significant bit for digital images. Symmetry 8(6):41

    Article  MathSciNet  Google Scholar 

  25. Hussain M, Wahab AWA, Javed N, Jung KH (2016) Recursive information hiding scheme through LSB, PVD shift, and MPE. IETE Tech Rev:1–11

  26. Hussain M, Wahab AWA, Ho ATS, Javed N, Jung KH (2017) A data hiding scheme using parity-bit pixel value differencing and improved rightmost digit replacement. Signal Process Image Commun 50:44–57

    Article  Google Scholar 

  27. Hussain M, Wahab AWA, Idris YIB, Ho ATS, Jung K-H (2018) Image steganography in spatial domain: a survey. Signal Process Image Commun 65:46–66

    Article  Google Scholar 

  28. A. D. Ker, R. Böhme, Revisiting Weighted Stego Image Steganalysis, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, Proceedings of SPIE 6819 Electronic Imaging, 6819 (2008) 501–517.

  29. Kodak Lossless True Color Image Suite n.d., Available at http://r0k.us/graphics/kodak/

  30. Kutter M, Petitcolas FAP (1999) A fair benchmark for image watermarking systems, electronic imaging '99. Security and Watermarking of Multimedia Contents 3657:219–239

    Google Scholar 

  31. Lin YT, Wang CM, Chen WS, Lin FP, Lin W (2017) A novel data hiding algorithm for high dynamic range images. IEEE Transactions on Multimedia 19(1):196–211

    Article  Google Scholar 

  32. E. Mammi, F. Battisti, M. Carli, A. Neri, K. Egiazarian, A novel spatial data hiding scheme based on generalized Fibonacci sequences, proceedings of SPIE 6982, Mobile multimedia/image processing, security, and applications, 6982 (2008).

  33. E. Mammi, F. Battisti, M. Carli, A. Neri, K. Egiazarian, Substitutive steganography in the generalized Fibonacci domain, proceedings of SPIE 7245, image processing: algorithms and systems VII 7245 (2009).

  34. H. Michiel, Lucas polynomials, Encyclopedia of Mathematics, Springer (2001).

  35. T. D. Nguyen, S. Arch-int, A secure steganographic algorithm based on cellular automata using Fibonacci representation, proceedings IEEE international conference on Information Science and Applications (ICISA), South Korea, 2013.

  36. C. Patsakis, E. Fountas, Extending Fibonacci LSB data hiding technique to more integer bases, proceedings third IEEE international conference on advanced computer theory and engineering (ICACTE), China (2010) 18–21.

  37. Petitcolas FAP, Anderson RJ, Kuhn MG (1999) Information hiding-a survey. Proceedings IEEE, special issue on protection of multimedia content 87(7):1062–1078

    Google Scholar 

  38. Pund-Dange S, Desai CG (2017) Data hiding technique using Catalan-Lucas number sequence. Indian J Sci Technol 10(4):1–6

    Article  Google Scholar 

  39. Qazanfari K, Safabakhsh R (2014) A new steganography method which preserves histogram: generalization of LSB++. Elsevier International Journal of Information Sciences 277:90–101

    Article  MathSciNet  Google Scholar 

  40. The information hiding homepage, Photo Database n.d., Available at http://www.petitcolas.net/watermarking/image_database

  41. USC-SIPI Image Database n.d., Vol. 3: Miscellaneous, Available at http://sipi.usc.edu/database/

  42. Vyas AO, Dudul SV (2015) An overview of image Steganographic techniques. Int J Adv Res Comput Sci 6(5):67–72

    Google Scholar 

  43. Weisstein, W. Eric, Zeckendorf's Theorem, MathWorld - A Wolfram Web, Available at http://mathworld.wolfram.com/ZeckendorfsTheorem.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Roy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, B., Dutta, K. & Roy, S. Data hiding in virtual bit-plane using efficient Lucas number sequences. Multimed Tools Appl 79, 22673–22703 (2020). https://doi.org/10.1007/s11042-020-08979-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08979-3

Keywords

Navigation