Skip to main content
Log in

Adaptive thresholding HOSVD with rearrangement of tensors for image denoising

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image denoising is a widely used approach in the field of image processing, which restores image more accurately. In particular, higher-order singular value decomposition (HOSVD) algorithm is a prominent algorithm for image denoising. However, traditional HOSVD transform utilizes the fixed threshold to truncate the small transform coefficients under the condition of a given tensor. Thus, some intrinsic properties of the tensor are ignored. In this paper, we propose an adaptive thresholding HOSVD with rearrangement of tensors, called ATH-HOSVD. First, the tensor-based HOSVD transform is employed to exploit the nonlocal tensor property. Second, we consider the spatial distribution of elements in the core tensors and adopt the indices of transform coefficients to produce adaptive threshold. Finally, in order to improve the sparsity of tensors, a rearrangement of tensors based on the amplitude sorting and Hilbert space-filling curve is integrated into the scheme of adaptive thresholding HOSVD. Various experiments on natural images are reported to not only demonstrate the effectiveness of the proposed ATH-HOSVD method, but also show its competitive speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing Overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    MATH  Google Scholar 

  2. Azzari L, Foi A (2016) Variance stabilization for noisy+estimate combination in iterative Poisson denoising. IEEE Signal Process Lett 23(8):1086–1090

    Google Scholar 

  3. Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process 18(11):2419

    MathSciNet  MATH  Google Scholar 

  4. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. in: IEEE Comput Soc Conf Comput Vis Pattern Recogn 2:60–65

  5. Chambolle A (2004) An algorithm for Total variation minimization and applications. Kluwer Academic Publishers

  6. Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532

    MathSciNet  MATH  Google Scholar 

  7. Cristovao C, Alessandro F, Vladimir K, et al (2018) Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal Proces Lett 1-1

  8. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image Denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    MathSciNet  Google Scholar 

  9. Dong W, Zhang L, Shi G (2013) Centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    MathSciNet  MATH  Google Scholar 

  10. Dong W, Shi G, Li X (2013) Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans Image Process 22(2):700–711

    MathSciNet  MATH  Google Scholar 

  11. Dong W, Shi G, Li X et al (2014) Compressive sensing via nonlocal low-rank regularization. IEEE Transact Image Process A Publ IEEE Signal Process Soc 23(8):3618

    MathSciNet  MATH  Google Scholar 

  12. Donoho DL (1992) Denoising via soft thresholding. IEEE Trans Inf Theory

  13. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    MathSciNet  Google Scholar 

  14. Elmoataz A, Lezoray O, Bougleux S (2008) Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Press

  15. Eslahi N, Aghagolzadeh A (2016) Compressive sensing image restoration using adaptive Curvelet Thresholding and nonlocal sparse regularization. IEEE Trans Image Process 25(7):3126–3140

    MathSciNet  MATH  Google Scholar 

  16. Feng L, Sun H, Sun Q et al (2016) Compressive sensing via nonlocal low-rank tensor regularization. Neurocomputing 216(C):45–60

    Google Scholar 

  17. Fu Y, Dong W (2016) 3D magnetic resonance image denoising using low-rank tensor approximation. Neurocomputing 195:30–39

    Google Scholar 

  18. Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image Denoising. IEEE Conference on Computer Vision and Pattern Recognition 2862-2869

  19. He L, Carin L (2009) Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans Signal Process 57(9):3488–3497

    MathSciNet  MATH  Google Scholar 

  20. He N, Wang JB, Zhang LL et al (2016) Non-local sparse regularization model with application to image denoising. Multimed Tools Appl 75(5):2579–2594

    Google Scholar 

  21. vHu H, Froment J, Liu Q (2015) Patch-based low-rank minimization for image denoising. Computer Science. 50

  22. Lai Z, Qu X, Liu Y et al (2015) Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal 27:93

    Google Scholar 

  23. Liu H, Xiong R, Zhang J, et al (2015) Image denoising via adaptive soft-thresholding based on non-local samples. Computer Vision and Pattern Recognition. IEEE:484–492

  24. Liu S, Cao J, Liu H, et al (2017) MRI reconstruction via enhanced group sparsity and nonconvex regularization. Neurocomputing 272

  25. Luisier F, Blu T, Unser M (2011) Image Denoising in mixed Poisson–Gaussian noise. IEEE Press

  26. Mairal J, Bach F, Ponce J et al (2010) Non-local sparse models for image restoration. IEEE, Int Conf Comput Vis 30:2272–2279

    Google Scholar 

  27. Mäkitalo M, Foi A (2013) Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. IEEE Trans Image Process 22(1):91–103

    MathSciNet  MATH  Google Scholar 

  28. Moon B, Jagadish HV, Faloutsos C et al (2001) Analysis of the clustering properties of the Hilbert space-filling curve. Knowledge Data Eng IEEE Transact 13(1):124–141

    Google Scholar 

  29. Peng Y, Meng D, Xu Z, et al (2014) Decomposable nonlocal tensor dictionary learning for multispectral image Denoising. Computer Vision and Pattern Recognition IEEE:2949–2956

  30. Pérez-Demydenko C, Brito-Reyes I, Fernández BA et al (2014) The complete set of homogeneous Hilbert curves in two dimensions. Appl Math Comput 234(C):531–542

    MathSciNet  MATH  Google Scholar 

  31. Peyré G (2008) Image processing with nonlocal spectral bases. Siam J Multiscale Model Simul 7(2):703–730

    MathSciNet  MATH  Google Scholar 

  32. Rajwade A, Rangarajan A, Banerjee A (2013) Image Denoising using the higher order singular value decomposition. IEEE Transact Pattern Analysis Mach Intell 35(4):849–862

    Google Scholar 

  33. Remenyi N, Nicolis O, Nason G, Vidakovic B (2014) Image Denoising with 2D scale-mixing complex wavelet transforms. IEEE Trans Image Process 23(12):5165–5174

    MathSciNet  MATH  Google Scholar 

  34. Rezghi M (2017) A novel fast tensor-based Preconditioner for image restoration. IEEE Trans Image Process PP(99):1

  35. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4):259–268

    MathSciNet  MATH  Google Scholar 

  36. Starck JL, Candes EJ, Donoho DL (2002) The Curvelet transform for image Denoising. IEEE Trans Image Process 11(6):670–684

    MathSciNet  MATH  Google Scholar 

  37. Tai Y, Yang J, Liu X and Xu C (2017) MemNet: a persistent memory network for image restoration. IEEE International Conference on Computer Vision (ICCV), pp. 4549-4557.

  38. Wang Q, Zhang X, Wu Y, et al (2017) Non-convex weighted lp minimization based group sparse representation framework for image denoising. IEEE Signal Process Lett PP(99):1

  39. Wang X., Girshick R., Gupta A., He K. (2018) Non-local neural networks. Comput Vis Patt Recogn (CVPR)

  40. Zhang M, Gunturk BK (2008) Multiresolution bilateral filtering for image denoising. IEEE Transact Image Process A Publ IEEE Signal Process Soc 17(12):2324–2333

    MathSciNet  MATH  Google Scholar 

  41. Zhang X, Burger M, Bresson X et al (2010) Bregmanized nonlocal regularization for Deconvolution and sparse reconstruction. Siam J Imaging Sci 3(3):253–276

    MathSciNet  MATH  Google Scholar 

  42. Zhang L, Dong W, Zhang D et al (2010) Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn 43(4):1531–1549

    MATH  Google Scholar 

  43. Zhang J, Zhao D, Zhao C et al (2012) Compressed sensing recovery via collaborative Sparsity. Data Compress Conf IEEE 5:287–296

    Google Scholar 

  44. Zhang J, Xiong R, Chen Z, et al (2012) Exploiting image local and nonlocal consistency for mixed Gaussian-impulse noise removal. IEEE Int Conf on Multimed Expo. IEEE:592-597

  45. Zhang K, Gao X, Tao D, Li X (2012) Single image super-resolution with non-local means and steering kernel regression. IEEE Trans Image Process 21(11):4544–4556

    MathSciNet  MATH  Google Scholar 

  46. Zhang J, Zhao D, Xiong R et al (2014) Image restoration using joint statistical modeling in a space-transform domain. IEEE Transact Circ Syst Vid Technol 24(6):915–928

    Google Scholar 

  47. Zhang J, Zhao C, Zhao D et al (2014) Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization. Signal Process 103(10):114–126

    Google Scholar 

  48. Zhang J, Zhao D, Gao W (2014) Group-based sparse representation for image restoration. IEEE Transact Image Process A Publ IEEE Signal Process Soc 23(8):3336–3351

    MathSciNet  MATH  Google Scholar 

  49. Zoran D, Weiss Y (2011) From learning models of natural image patches to whole image restoration. 6669(5):479-486

Download references

Acknowledgements

This work is supported in part by the National Science Foundation of China (Grant No. U1903213), the Science and Technology Program of Xi’an Municipality (Grant No. GXYD11.1) and the Zhejiang Provincial National Science Foundation of China (Grant No. LQY19F010001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Pan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Pan, Z., Du, D. et al. Adaptive thresholding HOSVD with rearrangement of tensors for image denoising. Multimed Tools Appl 79, 19575–19593 (2020). https://doi.org/10.1007/s11042-020-08624-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08624-z

Keywords

Navigation