Skip to main content
Log in

An improve face representation and recognition method based on graph regularized non-negative matrix factorization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Based on recently proposed Non-negative Matrix Factorization (NMF) and Graph Embedded (GE) techniques with Discriminant Criterion (DC), we present in this paper a new algorithm of Face Representation and Recognition (FRR) called Discriminant Graph Regularized Non-negative Matrix Factorization (DGNMF) for dimensionality reduction (DR). Here, we firstly encode the geometrical class information by constructing an affinity graph using the DGNMF algorithm. After this, we determine a matrix factorization which adequately represents the graph structure. Finally, we conduct experiments to prove that DGNMF provides a better representation and achieves higher face recognition rates than previous approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. AT&T Laboratories Cambridge, The ORL database of faces, http://www.uk.research.att.com/facedatabase.html

  2. Baek K, Draper BA, Beveridge JR et al (2002) PCA vs. ICA: A Comparison on the FERET Data Set. JCIS.:824–827

  3. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  4. Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proces Syst:585–591

  5. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  6. Buciu I (2004) A new sparse image representation algorithm applied to facial expression recognition. Machine Learning for Signal Processing, 2004. Proceedings of the 2004 14th IEEE Signal Processing Society Workshop. IEEE, pp. 539–548

  7. Cai D, He X, Wu X et al (2008) Non-negative matrix factorization on manifold. Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. IEEE:63–72

  8. Comon P (1994) Independent component analysis, a new concept? Signal Process 36(3):287–314

    Article  MATH  Google Scholar 

  9. He X, Niyogi P (2004) Locality preserving projections. Adv Neural Inf Proces Syst:153–160

  10. He X, Yan S, Hu Y et al (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  11. Jia YWY, Turk CHM (2004) Fisher non-negative matrix factorization for learning local features. Proc Asian Conf on Comp Vision:27–30

  12. Kiby M, Sirovich L (2010) Application of the kl procedure for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 98(6):1031–1044

    Google Scholar 

  13. Lai Z, Mo D, Wong WK, Yong X, Miao D, Zhang D (2018) Robust discriminant regression for feature extraction. IEEE Transactions on Cybernetics 48(8):2472–2484

    Article  Google Scholar 

  14. Lai Z, Wong WK, Xu Y et al (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Transactions on Neural Networks and Learning Systems 27(4):723–735

    Article  MathSciNet  Google Scholar 

  15. Lai Z, Xu Y, Chen Q et al (2014) Multilinear sparse principal component analysis. IEEE Transactions on Neural Networks and Learning Systems 25(10):1942–1950

    Article  Google Scholar 

  16. Lai Z, Xu Y, Yang J, Shen L, Zhang D (2017) Rotational invariant dimensionality reduction algorithms. IEEE Transactions on Cybernetics 47(11):3733–3746

    Article  Google Scholar 

  17. Lee JM (2006) Riemannian manifolds: an introduction to curvature. Springer Science & Business Media, New York

    Google Scholar 

  18. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  MATH  Google Scholar 

  19. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. Adv Neural Inf Proces Syst:556–562

  20. Li P, Bu J, Yang Y et al (2014) Discriminative orthogonal nonnegative matrix factorization with flexibility for data representation. Expert Syst Appl 41(4):1283–1293

    Article  Google Scholar 

  21. Liu G-H, Yang J-Y (2019) Exploiting color volume and color difference for salient region detection. IEEE Trans Image Process 28(1):6–16

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu G-H, Yang J-Y et al (2015) Content based image retrieval using computational visual attention model. Pattern Recogn 48(8):2554–2566

    Article  MathSciNet  Google Scholar 

  23. Liu W, Zheng N, Lu X (2003) Non-negative matrix factorization for visual coding. Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP'03). 2003 IEEE International Conference on. IEEE, 3: III-293-296

  24. Mika S, Ratsch G, Weston J et al (2003) Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE Trans Pattern Anal Mach Intell 25(5):623–628

    Article  Google Scholar 

  25. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  26. Saul LK, Roweis ST (2003) Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res 4(Jun):119–155

    MathSciNet  MATH  Google Scholar 

  27. Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  28. Shen F, Yang Y, Liu L, Liu W, Tao D, Shen HT (2017) Asymmetric Binary Coding for Image Search. IEEE Trans Multimedia 19(9):2022–2032

    Article  Google Scholar 

  29. Shen F, Xu Y, Liu L, Yang Y, Huang Z, Shen HT Unsupervised Deep Hashing with Similarity-Adaptive and Discrete Optimization. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2018.2789887

  30. Shen F, Zhou X, Yang Y, Song J, Shen HT, Tao D (2016) A Fast Optimization Method for General Binary Code Learning. IEEE Trans Image Processing 25(12):5610–5621

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen F, Zhou X, Yang Y et al (2016) A Fast Optimization Method for General Binary Code Learning. IEEE Trans Image Process 25(12):5610–5621

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi X, Yang Y, Guo Z et al (2014) Face recognition by sparse discriminant analysis via joint l 2, 1-norm minimization. Pattern Recogn 47(7):2447–2453

    Article  Google Scholar 

  33. Tao D, Cheng J, Song M et al (2016) Manifold Ranking-Based Matrix Factorization for Saliency Detection. IEEE Transactions on Neural Networks & Learning Systems 27(6):1122–1134

    Article  MathSciNet  Google Scholar 

  34. Tao D, Guo Y, Li Y et al (2018) Tensor rank preserving discriminant analysis for facial recognition. IEEE Trans Image Process 27(1):325–334

    Article  MathSciNet  MATH  Google Scholar 

  35. Tao D, Guo Y, Yu B et al (2018) Deep multi-view feature learning for person re-identification. IEEE Transactions on Circuits and Systems for Video Technology 28(10):2657–2666

    Article  Google Scholar 

  36. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  37. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. Computer Vision and Pattern Recognition. Proceedings CVPR'91, IEEE Computer Society Conference on. IEEE, 586–591

  38. Wang X, Rung-Ching C, Hong C et al (2018) Unsupervised feature analysis with sparse adaptive learning. Pattern Recogn Lett 102:89–94

    Article  Google Scholar 

  39. Wang X, Zhang X, Zeng Z et al (2016) Unsupervised spectral feature selection with l1-norm graph. Neurocomputing 200:47–54

    Article  Google Scholar 

  40. Xu B, Lu J, Huang G (2003) A constrained non-negative matrix factorization in information retrieval. Information Reuse and Integration, 2003. IRI 2003. IEEE International Conference on. IEEE, 273–277

  41. Xue Y, Tong CS, Chen WS, et al (2006) A modified non-negative matrix factorization algorithm for face recognition. Pattern Recognition, 2006. ICPR 2006. 18th International Conference on. IEEE, 3: 495–498

  42. Yale database, 1997. Available from: http://cvc.yale.edu/projects/yalefaces/yalefaces.html

  43. Yang Y J, Hu B G (2007) Pairwise constraints-guided non-negative matrix factorization for document clustering. Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society, pp. 250–256

  44. Yang J, Zhang D, Yang J et al (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans Pattern Anal Mach Intell 29(4):650–664

    Article  MathSciNet  Google Scholar 

  45. Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput 26(1):313–338

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Key R&D Program Grant No. 2017YFC0804002, the National Science Foundation of China under Grant Nos. 61876213, 61462064, 6177227, 61861033, 61603192, the China Postdoctoral Science Foundation under Grant No. 2016 M600674, the Natural Science Fund of Jiangsu Province under Grants BK20161580, BK20171494 and China’s Jiangxi Province Natural Science Foundation (No. 20181BAB202022), and the Fund of China’s Jiangxi Provincial Department of Education (No. GJJ170599).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Wan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The convergent analysis

Since the algorithm is an iterative method, we analyze its convergence in this section. Here we first introduce the definition of auxiliary function [19] to prove the convergence.

Definition 1. [19] Z(v, v ) is an auxiliary function for F(v) if the conditions

$$ Z\left(v,{v}^{\prime}\right)\ge F(v),Z\left(v,v\right)=F(v) $$
(17)

are satisfied, then F is non-increasing under the update

$$ {v}^{\left(t+1\right)}=\underset{v}{\arg \kern0.2em \min}\kern0.2em Z\left(v,{v}^{(t)}\right) $$
(18)

Proof

$$ F\left({v}^{\left(t+1\right)}\right)\le Z\left({v}^{\left(t+1\right)},{v}^{(t)}\right)\le Z\left({v}^{(t)},{v}^{(t)}\right)=F\left({v}^{(t)}\right) $$

Now we need to show that the updating step for V in Eq. (16) is exactly the update in Eq. (18) with a proper auxiliary function.

We can rewrite the objective function of DGNMF in Eq. (10) as follows:

$$ {\displaystyle \begin{array}{c}\ell ={\left\Vert X-U{V}^T\right\Vert}_F^2+{\lambda}_1 tr\left({V}^T{L}^CV\right)-{\lambda}_2 tr\left({V}^T{L}^pV\right)\\ {}\begin{array}{l}=\sum \limits_{i=1}^M\sum \limits_{j=1}^N{\left({x}_{ij}-\sum \limits_{k=1}^K{u}_{ik}{v}_{jk}\right)}^2+{\lambda}_1\sum \limits_{k=1}^K\sum \limits_{j=1}^N\sum \limits_{l=1}^M{v}_{jk}{L}_{jl}^c{v}_{lk}\\ {}-{\lambda}_2\sum \limits_{k=1}^K\sum \limits_{j=1}^N\sum \limits_{l=1}^M{v}_{jk}{L}_{jl}^p{v}_{lk}\end{array}\end{array}} $$
(19)

Considering any element vab in V, we use Fab to denote the part of which is only relevant to vab. It is easy to check that

$$ {\displaystyle \begin{array}{l}{F}_{ab}^{\prime }={\left(\frac{\partial {\ell}_1}{\partial v}\right)}_{ab}\\ {}\kern1.6em ={\left(-2{X}^TU+2V{U}^TU+2{\lambda}_1{L}^cV-2{\lambda}_2{L}^pV\right)}_{ab}\end{array}} $$
(20)
$$ {F}_{ab}^{{\prime\prime} }=2{\left({U}^TU\right)}_{bb}+2{\lambda}_1{L}_{aa}^c-2{\lambda}_2{L}_{aa}^p $$
(21)

Since our update is essentially element-wise, it is sufficient to show that each Fab is non-increasing under the update step of Eq. (16).

Lemma 1: Function

$$ {\displaystyle \begin{array}{l}Z\left(v,{v}_{ab}^{(t)}\right)={F}_{ab}\left({v}_{ab}^{(t)}\right)+{F}_{ab}^{\prime}\left({v}_{ab}^{(t)}\right)\left(v-{v}_{ab}^{(t)}\right)\kern0.2em \\ {}\kern0.5em +\frac{{\left(V{U}^TU\right)}_{ab}+{\lambda}_1{\left({D}^cV\right)}_{ab}+{\lambda}_2{\left({W}^pV\right)}_{ab}}{v_{ab}^{(t)}}{\left(v-{v}_{ab}^{(t)}\right)}^2\end{array}} $$
(22)

is an auxiliary function for Fab, and the part of which is only relevant to vab.

Proof

Since Z(v, v) = Fab(v) is obvious, we need only show that \( Z\left(v,{v}_{ab}^{(t)}\right)\ge {F}_{ab}(v) \). To do this, we compare the Taylor series expansion of Fab(v).

$$ {\displaystyle \begin{array}{l}{F}_{ab}(v)={F}_{ab}\left({v}_{ab}^{(t)}\right)+{F}_{ab}^{\prime}\left({v}_{ab}^{(t)}\right)\left(v-{v}_{ab}^{(t)}\right)\kern0.2em \\ {}\kern2.899999em +\left[{\left({U}^TU\right)}_{bb}+{\lambda}_1{L}_{aa}^c-{\lambda}_2{L}_{aa}^p\right]{\left(v-{v}_{ab}^{(t)}\right)}^2\end{array}} $$
(23)

with Eq. (22) to find that \( G\left(v,{v}_{ab}^{(t)}\right)\ge {F}_{ab}(v) \) is equivalent to

$$ {\displaystyle \begin{array}{l}\frac{{\left(V{U}^TU\right)}_{ab}+{\lambda}_1{\left({D}^cV\right)}_{ab}+{\lambda}_2{\left({W}^pV\right)}_{ab}}{v_{ab}^{(t)}}\\ {}\ge {\left({U}^TU\right)}_{bb}+{\lambda}_1{L}_{aa}^c-{\lambda}_2{L}_{aa}^p\end{array}} $$
(24)

We have

$$ {\left(V{U}^TU\right)}_{ab}=\sum \limits_{l=1}^k{v}_{al}^{(t)}{\left({U}^TU\right)}_{lb}\ge {v}_{ab}^{(t)}{\left({U}^TU\right)}_{bb} $$
(25)

and

$$ {\displaystyle \begin{array}{l}{\lambda}_1{\left({D}^cV\right)}_{ab}+{\lambda}_2{\left({W}^pV\right)}_{ab}\\ {}={\lambda}_1\sum \limits_{j=1}^M{D}_{aj}^c{v}_{jb}^{(t)}+{\lambda}_2\sum \limits_{j=1}^M{W}_{aj}^p{v}_{jb}^{(t)}\ge {\lambda}_1{D}_{aa}^c{v}_{ab}^{(t)}+{\lambda}_2{W}_{aa}^p{v}_{ab}^{(t)}\\ {}\ge {\lambda}_1{\left({D}^c-{W}^c\right)}_{aa}{v}_{ab}^{(t)}-{\lambda}_2{\left({D}^p-{W}^p\right)}_{aa}{v}_{ab}^{(t)}\\ {}={\lambda}_1{L}_{aa}^c{v}_{ab}^{(t)}-{\lambda}_2{L}_{aa}^p{v}_{ab}^{(t)}\end{array}} $$
(26)

Thus, Eq. (24) holds and \( Z\left(v,{v}_{ab}^{(t)}\right)\ge {F}_{ab}(v) \).

With the above preparations, we have the following theorem:

Theorem 1

The objective function is non-increasing under the updating rules uij and vij.

We can now demonstrate the convergence of Theorem 1.

Proof

Replacing \( Z\left(v,{v}_{ab}^{(t)}\right) \) in Eq. (18) by Eq. (22) results in the update rule:

$$ {\displaystyle \begin{array}{c}{v}_{ab}^{\left(t+1\right)}={v}_{ab}^{(t)}-{v}_{ab}^{(t)}\frac{F_{ab}^{\prime}\left({v}_{ab}^{(t)}\right)}{2{\left(V{U}^TU\right)}_{ab}+2{\lambda}_1{\left({D}^CV\right)}_{ab}+2{\lambda}_2{\left({W}^PV\right)}_{ab}}\\ {}={v}_{ab}^{(t)}\frac{{\left({X}^TU+{\lambda}_1{W}^CV+{\lambda}_2{D}^PV\right)}_{ab}}{{\left(V{U}^TU+{\lambda}_1{D}^CV+{\lambda}_2{W}^PV\right)}_{ab}}\end{array}} $$
(27)

Since Eq. (22) is an auxiliary function, Fab is non-increasing under this update rules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, M., Lai, Z., Ming, Z. et al. An improve face representation and recognition method based on graph regularized non-negative matrix factorization. Multimed Tools Appl 78, 22109–22126 (2019). https://doi.org/10.1007/s11042-019-7454-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7454-2

Keywords

Navigation