Skip to main content
Log in

An adaptive second-order partial differential equation based on TV equation and p-Laplacian equation for image denoising

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper introduces an adaptive diffusion partial differential equation (PDE) for noise removal, which combines a total variation (TV) term and a p-Laplacian (1 < p ≤ 2) term. Utilizing the edge indicator, we can adaptively control the diffusion model, which alternates between the TV and the p-Laplacian(1 < p ≤ 2) in accordance with the image feature. The main advantage of the proposed model is able to alleviate the staircase effect in smooth regions and preserve edges while removing the noise. The existence of a weak solution of the proposed model is proved. Experimental results confirm the performance of the proposed method with regard to peak signal-to-noise ratio (PSNR), mean structural similarity (MSSIM) and visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andreu F, Mazn JM, Caselles V (2001) The Dirichelt Peroblem for the total varitaion flow. J Funct Anal 180(2):347–403. https://doi.org/10.1007/978-3-0348-7928-6_5

    Article  MathSciNet  Google Scholar 

  2. Andreu F, Caselles V, Diaz JI, Marzon JM (2002) Some qualitative properties for the total variation flow. J Funct Anal 188(2):516–547. https://doi.org/10.1006/jfan.2001.3829

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial difierential equations and the calculus of variations, 2nd. Springer, New York

    Book  MATH  Google Scholar 

  4. Blomgren P, Chan TF, Mulet P, Wong CK (1997) Total variation image restoration: numerical methods and extensions. Int Conf Image Process 3:384–387. https://doi.org/10.1109/ICIP.1997.632128

    Article  Google Scholar 

  5. Canny J (1986) A Computational Approach to Edge Detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698. https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  6. Chambolle A, Lions PL (1997) Image recovery via total varition minimization and related problems. Numerische Mathematik 76(2):167–188. https://doi.org/10.1007/s002110050258

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan TF, Esedoglu S, Park FE (2007) Image decomposition combining staircase reduction and texture extraction. J Vis Commun Image Represent 18(6):464–486. https://doi.org/10.1016/j.jvcir.2006.12.004

    Article  Google Scholar 

  8. Chen Y, Levine S, Rao M (2006) Variable exponent, linear growth functionals in image restoration. Siam J Appl Math 66 (4):1383–1406. https://doi.org/10.1137/050624522

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilboa G, Sochen N, Zeevi YY (2004) Image enhancement and denoising by complex diffusion processes. IEEE Trans Pattern Anal Mach Intell 26(8):1020–1036. https://doi.org/10.1109/TPAMI.2004.47

    Article  Google Scholar 

  10. Guidotti P, Longo K (2011) Two enhanced fourth-order diffusion models for image denoising. J Math Imaging Vision 40(2):188–198. https://doi.org/10.1007/s10851-010-0256-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuijper A (2007) P-Laplacian Driven Image Processing. IEEE Int Conf Image Process 5:257–260. https://doi.org/10.1109/ICIP.2007.4379814

    Article  Google Scholar 

  12. Li F, Li Z, Pi L (2010) Variable exponent functionals in image restoration. Appl Math Comput 216(3):870–882. https://doi.org/10.1016/j.amc.2010.01.094

    Article  MathSciNet  MATH  Google Scholar 

  13. Lysaker M, Lundervold A, Tai X (2003) Noise removal using forth-order partial difffential equation with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process 12(12):1579–1590. https://doi.org/10.1109/TIP.2003.819229

    Article  MATH  Google Scholar 

  14. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffucsion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. https://doi.org/10.1109/34.56205

    Article  Google Scholar 

  15. Rafsanjani HK, Sedaaghi MH, Saryazdi S (2016) Efficient diffusion coefficient for image denoising. Comput Math Appl 72(4):893–903. https://doi.org/10.1016/j.camwa.2016.06.005

    Article  MathSciNet  MATH  Google Scholar 

  16. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60(1-4):259–268. https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  17. Simon J (1986) Compact sets in the space L p(0,T; B). Annali di Matematica 146(1):65–96. https://doi.org/10.1007/BF01762360

    Article  Google Scholar 

  18. Suray Prasath VB, Urbano JM, Vorotnikov DA (2015) Analysis of adaptive forward-backward diffusion flows with applications in image processing. Inverse Prob 31 (10):105008. https://doi.org/10.1088/0266-5611/31/10/105008

    Article  MathSciNet  MATH  Google Scholar 

  19. Suray Prasath VB, Vorotnikov DA, Pelapur R, Jose S, Seetharaman G, Palaniappan K (2015) Multiscale Tikhonov-Total variation image restoration using spatially varying edge coherence exponent. IEEE Trans Image Process 24(12):5220–5235. https://doi.org/10.1109/TIP.2015.2479471

    Article  MathSciNet  MATH  Google Scholar 

  20. Temam R (1979) Navier-stokes equuations. Studies in Mathematics and its Applications, vol 2. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  21. Vorotnikov D (2012) Global generalized solutions for Maxwell-alpha and Euler-alpha equations. Nonlinearity 25(2):309–327. https://doi.org/10.1088/0951-7715/25/2/309

    Article  MathSciNet  MATH  Google Scholar 

  22. Weickert J, Romeny BH, Viergever MA (1998) Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Image Process 7(3):398–410. https://doi.org/10.1109/83.661190

    Article  Google Scholar 

  23. You YL, Kaveh M (2000) Fourth-order partial differential equations for noise removal. IEEE Trans Image Process 9(10):1723–1730. https://doi.org/10.1109/83.869184

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou B, Mu CL, Feng J, Wei W (2012) Continuous level anisotropic diffusion for noise removal. Appl Math Model 36(8):3779–3786. https://doi.org/10.1016/j.apm.2011.11.026

    Article  MathSciNet  MATH  Google Scholar 

  25. Zvyagin VG, Vorontnikov DA (2008) Topological approximation methods for evoluctionary problems of nonlinear hydrodynamics. De Gruyter Series in Nonliear Analysis and Applications, vol 12, De Gruyter & Co., Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanzhou Ye.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ye, W. An adaptive second-order partial differential equation based on TV equation and p-Laplacian equation for image denoising. Multimed Tools Appl 78, 18095–18112 (2019). https://doi.org/10.1007/s11042-019-7170-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7170-y

Keywords

Navigation