Skip to main content
Log in

Fast kernel sparse representation based classification for Undersampling problem in face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We propose a fast kernel sparse representation based classification (SRC) for undersampling problem, i.e., each class has very few training samples, in face recognition. The proposed algorithm exploits a nonlinear mapping to map the data from the original input space into a high-dimensional feature space. Then, it performs very fast sparse representation and classification of samples in this space. Similar to the typical SRC methods, the proposed approach is based on the L1 norm minimization, whose direct solution can be very time-consuming. In order to improve the computational efficiency, our method uses the coordinate descent method in the feature space, which can avoid directly solving the L1 norm minimization problem, and significantly expedites the computational procedure. Compared with other SRC methods based on the L1 norm minimization, our proposed method achieves very high computational efficiency, without significantly degrading the classification performance. Several experiments on popular face databases demonstrate that our method is a promising efficient kernel SRC based method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adamo A, Grossi G, Lanzarotti R, Lin J (2015) Robust face recognition using sparse representation in LDA space. Mach Vis Appl 26(6):837–847

    Google Scholar 

  2. Basri R, Hassner T, Zelnik-Manor L (2010) Approximate nearest subspace search. IEEE Trans Pattern Anal Mach Intell 33(2):266–278

    Google Scholar 

  3. Beveridge JR, Draper BA, Chang JM, Kirby M et al (2009) Principal angles separate subject illumination spaces in YDB and CMU-PIE. IEEE Trans Pattern Anal Mach Intell 31(2):351–356

    Google Scholar 

  4. Candes EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    MathSciNet  MATH  Google Scholar 

  5. Chen Z, Zuo W, Hu Q, Lin L (2015) Kernel sparse representation for time series classification. Inf Sci 292:15–26

    MathSciNet  MATH  Google Scholar 

  6. J. Chen, X. Song, L. Nie, X. Wang, et al.(2016) Micro tells macro: predicting the popularity of micro-videos via a Transductive model, presented at the proceedings of the 24th ACM international conference on multimedia, Amsterdam, The Netherlands

  7. Choe C, Choe G, Wang T, Han S, et al (2019) "Deep feature learning with mixed distance maximization for person re-identification," Multimedia Tools and Applications, June 26

  8. Deng W, Hu J, Guo J (2012) Extended SRC: Undersampled face recognition via intraclass variant dictionary. IEEE Trans Pattern Anal Mach Intell 34(9):1864–1870

    Google Scholar 

  9. Deng W, Hu J, Guo J, (2013) In defense of sparsity based face recognition," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013 ), pp. 399–406

  10. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal minimal l1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829

    MathSciNet  MATH  Google Scholar 

  11. Fan Z, Wang J, Zhu Q, Fang X et al (2013) Local minimum squared error for face and handwritten character recognition. Journal of Electronic Imaging 22(3):033027

    Google Scholar 

  12. Fan Z, Ni M, Zhu Q, Sun C et al (2015)L0-norm sparse representation based on modified genetic algorithm for face recognition. J Vis Commun Image Represent 28:15–20

    Google Scholar 

  13. Fan Z, Ni M, Zhu Q, Liu E (2015) Weighted sparse representation for face recognition. Neurocomputing 151:304–309

    Google Scholar 

  14. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Google Scholar 

  15. Gao S, Tsang IW-H, Chia L-T(2013) Sparse representation with kernels. IEEE Trans Image Process 22(2):423–434

    MathSciNet  MATH  Google Scholar 

  16. Gao S, Chia L, Tsang I, Ren Z (2014) Concurrent single-label image classification and annotation via efficient multi-layer group sparse coding. IEEE Transactions on multimedia 16(3):762–771

    Google Scholar 

  17. Han J, Zhang D, Hu X, Guo L et al (2015) Background prior-based salient object detection via deep reconstruction residual. IEEE Transactions on Circuits and Systems for Video Technology 25(8):1309–1321

    Google Scholar 

  18. Huang KK, Dai DQ, Ren CX, Lai ZR (2017) Learning kernel extended dictionary for face recognition. IEEE Transactions on Neural Networks and Learning Systems 28(5):1082–1094

    Google Scholar 

  19. Jian M, Jung C (2013)Class-discriminative kernel sparse representation-based classification using multi-objective optimization. IEEE Trans Signal Process 61(18):4416–4427

    MathSciNet  MATH  Google Scholar 

  20. Kim S-J, Koh K, Lustig M, Boyd S et al (2007) An interior-point method for large-scale l 1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing 1(4):606–617

    Google Scholar 

  21. Kushwaha N, Pant M, (2018) "Textual data dimensionality reduction - a deep learning approach," Multimedia Tools and Applications, December 15

  22. Li Z, Lai Z, Xu Y, Yang J et al (2017) A locality-constrained and label embedding dictionary learning algorithm for image classification. IEEE Transactions on Neural Networks and Learning Systems 28(2):278–293

    MathSciNet  Google Scholar 

  23. Liu W, Yu Z, Lu L, Wen Y et al (2015) KCRC-LCD: discriminative kernel collaborative representation with locality constrained dictionary for visual categorization. Pattern Recogn 48(10):3076–3092

    Google Scholar 

  24. Liu X, Zhao G, Yao J, Qi C (2015) Background subtraction based on low-rank and structured sparse decomposition. IEEE Trans Image Process 24(8):2502–2514

    MathSciNet  MATH  Google Scholar 

  25. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Google Scholar 

  26. Nie F, Huang H, Cai X, Ding C (2010) Efficient and robust feature selection via joint L2, 1-norms minimization. Twenty-Fourth Annual Conference on Advances in Neural Information Processing Systems (NIPS 2010) 23:1813–1821

    Google Scholar 

  27. Ren C-X, Dai D-Q, Yan H (2012) Robust classification using L2,1-norm based regression model. Pattern Recogn 45:2708–2718

    MATH  Google Scholar 

  28. Scholkopf B, Mika S, Burges CJC, Knirsch P et al (1999) Input space versus feature space in kernel-based methods. IEEE Trans Neural Netw 10(5):1000–1017

    Google Scholar 

  29. Shao C, Song X, Feng Z-H, Wu X-J et al (2017) Dynamic dictionary optimization for sparse-representation-based face classification using local difference images. Inf Sci 393:1–14

    Google Scholar 

  30. Shekhar S, Patel VM, Nasrabadi NM, Chellappa R (2014) Joint sparse representation for robust multimodal biometrics recognition. IEEE Trans Pattern Anal Mach Intell 36(1):113–126

    Google Scholar 

  31. Shrivastava A, Patel V, Chellappa R (2014) Multiple kernel learning for sparse representation-based classification. IEEE Trans Image Process 23(7):3013–3024

    MathSciNet  MATH  Google Scholar 

  32. Song B, Li P, Li J, Plaza A (2016)One-class classification of remote sensing images using kernel sparse representation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(4):1613–1623

    Google Scholar 

  33. Song X, Feng F, Liu J, Li Z et al (2017) "NeuroStylist: neural compatibility modeling for clothing matching," presented at the proceedings of the 25th ACM international conference on multimedia. Mountain View, California

    Google Scholar 

  34. Wagner A, Wright J, Ganesh A, Zhou Z et al (2012) Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Mach Intell 34(2):372–386

    Google Scholar 

  35. Wang S-J, Yang J, Sun M-F, Peng X-J et al (2012) Sparse tensor discriminant color space for face verification. IEEE Transactions on Neural Networks and Learning Systems 23(6):876–888

    Google Scholar 

  36. Wang J, Lu C, Wang M, Li P et al (2014) Robust face recognition via adaptive sparse representation. IEEE Transactions on Cybernetics 44(12):2368–2378

    Google Scholar 

  37. Wang L, Yan H, Lv K, Pan C (2014) Visual tracking via kernel sparse representation with multi-kernel fusion. IEEE Transactions on Circuits and Systems for Video Technology 24(7):1132–1141

    Google Scholar 

  38. Wright J, Yang AY, Ganesh A, Sastry SS et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Google Scholar 

  39. Wright J, Ma Y, Mairal J, Sapiro G et al (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Google Scholar 

  40. Xu Y, Zhang D, Yang J, Yang J-Y(2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Transactions on Circuits and Systems for Video Technology 21(9):1255–1262

    MathSciNet  Google Scholar 

  41. Xu Z, Chang X, Xu F, Zhang H (2012) Regularization: a thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning Systems 23(7):1013–1027

    Google Scholar 

  42. Xu Y, Fang X, Li X, Yang J et al (2014) Data uncertainty in face recognition. IEEE Transactions on Cybernetics 44(10):1950–1961

    Google Scholar 

  43. Xu Y, Zhang Z, Lu G, Yang J (2016) Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification. Pattern Recogn 54:68–82

    Google Scholar 

  44. Yang M, Zhang L (2010) "Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary," presented at the ECCV 2010. Crete, Greece

    Google Scholar 

  45. Yang J, Zhang D, Yang J-y, Niu B (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans Pattern Anal Mach Intell 29(4):650–664

    Google Scholar 

  46. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    MathSciNet  MATH  Google Scholar 

  47. Yang J, Zhang L, Xu Y, Yang J-y(2012) Beyond sparsity: the role of L1-optimizer in pattern classification. Pattern Recogn 45(3):1104–1118

    MATH  Google Scholar 

  48. Yang J, Chu D, Zhang L, Xu Y (2013) Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Transactions on Neural Networks and Learning Systems 24(7):1023–1035

    Google Scholar 

  49. Yang M, Zhang L, Feng X, Zhang D (2014) Sparse representation based fisher discrimination dictionary learning for image classification. Int J Comput Vis 109(3):209–232

    MathSciNet  MATH  Google Scholar 

  50. Yao J, Wang S, Zhu X, Huang J (2016) "Imaging Biomarker Discovery for Lung Cancer Survival Prediction," presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, Athens, Greece

  51. Yin J, Liu Z, Jin Z, Yang W (2012) Kernel sparse representation based classification. Neurocomputing 77(1):120–128

    Google Scholar 

  52. Zhang L, Yang M, Feng X (2011) Sparse Representation or Collaborative Representation: Which Helps Face Recognition? ," presented at the ICCV 2011, Barcelona, Spain.

  53. Zhang L, Zhou W-D, Chang P-C, Liu J et al (2012) Kernel sparse representation-based classifier. IEEE Trans Signal Process 60(4):1684–1695

    MathSciNet  MATH  Google Scholar 

  54. Zhang G, Sun H, Xia G, Sun Q (2016) Multiple kernel sparse representation-based orthogonal discriminative projection and its cost-sensitive extension. IEEE Trans Image Process 25(9):4271–4285

    MathSciNet  MATH  Google Scholar 

  55. Zheng M, Bu J, Chen C, Wang C et al (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This article is partly supported by Natural Science Foundation of China (NSFC) under grants Nos. 61991401, 61673097, 61490704 and Jiangxi Provincial Natural Science Foundation of China under Grant 20192ACBL20010, as well as Science and Technology Foundation of Jiangxi Transportation Department of China (2015D0066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizhu Fan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Wei, C. Fast kernel sparse representation based classification for Undersampling problem in face recognition. Multimed Tools Appl 79, 7319–7337 (2020). https://doi.org/10.1007/s11042-019-08211-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08211-x

Keywords

Navigation