Skip to main content
Log in

Scale-adaptive local binary pattern for texture classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Local binary pattern (LBP) has already been proved to be a powerful measure of image texture with fixed sampling scheme: all P neighbor pixels in a single-scale are usually sampled by using a fixed radius R. It can effectively address grayscale and rotation variations. However, the LBP method is sensitive to image noise and fails to achieve desirable performance for texture classification with significant scale changes. With the aim to deal with these disadvantages of LBP, a new method named scale-adaptive local binary pattern (SALBP) is proposed in this paper. The essence of our proposed SALBP method is to adaptively find a single but optimal scale from multiple scales for each radial direction in accordance with the characteristics of a local area. First, we select candidates of neighbors by the majority vote strategy for signs. Second, we determine final neighbor pixels by the maximal difference magnitude selection strategy for magnitudes of candidates. This procedure lets each neighbor pixel to adaptively obtain its own optimal scale from multiple scales, which refers to the adaptive optimal sampling radius. Therefore, scale invariance can be significantly improved. Extensive experiments on four public texture databases (i.e., Outex, CUReT, UIUC and Brodatz) demonstrate that the proposed SALBP method achieves significantly better results than representative LBP variants for texture classification tasks with a smaller feature dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andrysiak T, Choraś M (2005) Image retrieval based on hierarchical gabor filters. Int J Math Comput Sci 15(4):471–480

    MathSciNet  MATH  Google Scholar 

  2. Anys H et al (1995) Evaluation of textural and multipolarization radar features for crop classification. IEEE Trans Geosci Remote Sens 33(5):1170–1181

    Article  Google Scholar 

  3. Biasotti S et al (2014) SHREC’14 track: retrieval and classification on textured 3D models. Proceedings of the Eurographics workshop on 3d object retrieval, Strasbourg, France: 111–120

  4. Biasotti S et al (2016) Retrieval and classification methods for textured 3d models: a comparative study. Vis Comput 32(2):217–241

    Article  MathSciNet  Google Scholar 

  5. Brodatz P (1966) Textures: a photographic album for artists and designers. Dover Pubns

  6. Chen JL, Kundu A (1994) Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden markov model. IEEE Trans Pattern Anal Mach Intell 16(2):208–214

    Article  Google Scholar 

  7. Cohen FS, Fan Z, Attali S (1991) Automated inspection of textile fabrics using textural models. IEEE Trans Pattern Anal Mach Intell 13(8):803–808

    Article  Google Scholar 

  8. Dana KJ, Ginneken BV, Nayar SK, Koenderink JJ (1997) Reflectance and texture and of real. 2013. IEEE Conf Comput Vis Pattern Recognit 18:151

    Article  Google Scholar 

  9. Davis LS, Johns SA, Aggarwal JK (1979) Texture analysis using generalized co-occurrence matrices. IEEE Trans Pattern Anal Mach Intell 1(3):251–259

    Article  Google Scholar 

  10. Deng H, Clausi DA (2004) Gaussian mrf rotation-invariant features for image classification. IEEE Trans Pattern Anal Mach Intell 26(7):951–955

    Article  Google Scholar 

  11. Gao L, Guo Z, Zhang H, Xu X, Shen HT (2017) Video captioning with attention-based lstm and semantic consistency. IEEE Trans Multimed 19(9):2045–2055

    Article  Google Scholar 

  12. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  13. Guo Z, Wang X, Zhou J, You J (2015) Robust texture image representation by scale selective local binary patterns. IEEE Trans Image Process 25(2):687–699

    Article  MathSciNet  Google Scholar 

  14. Ji Q, Engel J, Craine E (2000) Texture analysis for classification of cervix lesions. IEEE Trans Med Imaging 19(11):1144–1149

    Article  Google Scholar 

  15. Ji L, Ren Y, Liu G, Pu X (2018) Training-based gradient lbp feature models for multiresolution texture classification. IEEE Trans Image Process 48(9):2683–2696

    Google Scholar 

  16. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  17. Li R, Liu JB (2018) Fast approach for analysis windows computation of multiwindow discrete gabor transform. IEEE Access 6:45681–45689

    Article  Google Scholar 

  18. Li Z, Liu G, Yang Y, You J (2012) Scale- and rotation-invariant local binary pattern using scale-adaptive texton and subuniform-based circular shift. IEEE Trans Image Process 21(4):2130–2140

    Article  MathSciNet  Google Scholar 

  19. Pan Z, Wu X, Li Z, Zhou Z (2017) Local adaptive binary patterns using diamond sampling structure for texture classification. IEEE Signal Processing Letters 24(6):828–832.

    Article  Google Scholar 

  20. Liu L, Long Y, Fieguth PW, Lao S, Zhao G (2014) Brint: binary rotation invariant and noise tolerant texture classification. IEEE Trans Image Process 23(7):3071–3084

    Article  MathSciNet  Google Scholar 

  21. Liu L, Lao S, Fieguth P, Guo Y, Wang X, Pietikainen M (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368–1381

    Article  MathSciNet  Google Scholar 

  22. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  23. Ojala T, Maenpaa T, Pietikainen M, Viertola J, Kyllönen J, Huovinen S (2002) Outex - new framework for empirical evaluation of texture analysis algorithms. Proc 16th Int Conf Pattern Recogn 2002, Quebec, Canada 1:701–706

    Google Scholar 

  24. Pan Z, Li Z, Fan H (2017) Feature based local binary pattern for rotation invariant texture classification. Expert Syst Appl 88:238–248

    Article  Google Scholar 

  25. Ren J, Jiang X, Yuan J (2013) Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans Image Process 22(10):4049–4060

    Article  MathSciNet  Google Scholar 

  26. Schaefer G, Doshi NP (2012) Multi-dimensional local binary pattern descriptors for improved texture analysis. International conference on pattern recognition (ICPR), Tsukuba, Japan: 2500–2503

  27. Song J, Gao L, Nie F, Shen HT, Yan Y, Sebe N (2016) Optimized graph learning using partial tags and multiple features for image and video annotation. IEEE Trans Image Process 25(11):4999–5011

    Article  MathSciNet  Google Scholar 

  28. Song J, Zhang H, Li X, Gao L, Hong R (2018) Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans Image Process 27(7):3210–3221

    Article  MathSciNet  Google Scholar 

  29. Song W, Zhang Y, Liu F (2018) Taking advantage of multi-regions-based diagonal texture structure descriptor for image retrieval. Expert Syst Appl 96:347–357

    Article  Google Scholar 

  30. Song J, Guo Y, Gao L, Li X, Hanjalic A, Shen HT (2018) From deterministic to generative: multi-modal stochastic rnns for video captioning. IEEE Trans Neural Netw Learn Syst:1–12

  31. Pan Z, Fan H, Zhang L (2015). Texture classification using local pattern based on vector quantization. IEEE Trans Image Process 24:5379–5388.

    Article  MathSciNet  Google Scholar 

  32. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560

    Article  MathSciNet  Google Scholar 

  33. Wang X, Gao L, Song J, Shen H (2016) Beyond frame-level cnn: saliency-aware 3d cnn with lstm for video action recognition. IEEE Signal Process Lett 24(4):510–514

    Article  Google Scholar 

  34. Wang X, Gao L, Wang P, Sun X, Liu X (2018) Two-stream 3-d convnet fusion for action recognition in videos with arbitrary size and length. IEEE Trans Multimed 20(3):634–644

    Article  Google Scholar 

  35. Wu X, Sun J (2017) Joint-scale lbp: a new feature descriptor for texture classification. Vis Comput 33(3):317–329

    Article  MathSciNet  Google Scholar 

  36. Xiao Y, Cao Z, Wang L, Li T (2017) Local phase quantization plus: a principled method for embedding local phase quantization into fisher vector for blurred image recognition. Inf Sci 420:77–95

    Article  Google Scholar 

  37. Zhao Y, Huang DS, Jia W (2012) Completed local binary count for rotation invariant texture classification. IEEE Trans Image Process 21(10):4492–4497

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQY19F010001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Pan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Wu, X. & Li, Z. Scale-adaptive local binary pattern for texture classification. Multimed Tools Appl 79, 5477–5500 (2020). https://doi.org/10.1007/s11042-019-08205-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08205-9

Keywords

Navigation