Skip to main content
Log in

Piecewise supervised deep hashing for image retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel hash code generation method based on convolutional neural network (CNN), called the piecewise supervised deep hashing (PSDH) method to directly use a latent layer data and the output layer result of the classification network to generate a two-segment hash code for every input image. The first part of the hash code is the class information hash code, and the second part is the feature message hash code. The method we proposed is a point-wise approach and it is easy to implement and works very well for image retrieval. In particular, it performs excellently in the search of pictures with similar features. The more similar the images are in terms of color and geometric information and so on, the better it will rank above the search results. Compared with the hashing method proposed so far, we keep the whole hashing code search method, and put forward a piecewise hashing code search method. Experiments on three public datasets demonstrate the superior performance of PSDH over several state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andoni A, Indyk P (2006) Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. FOCS, IEEE Comput Soc: 459–468

  2. Andoni A, Razenshteyn I (2015) Optimal data-dependent hashing for approximate near neighbors. STOC, Full version at http://arxiv.org/abs/1501.01062

  3. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable distributions. Sym Comput Geomet: 253–262

  4. Eakins J, Graham M (1999) Content-based image retrieval, Technical Report, University of Northumbria at Newcastle

  5. Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, editors, VLDB'99, Proceedings of 25th International Conference on Very Large Data Bases, September 7–10, 1999, Edinburgh, Scotland, UK, pages 518–529. Morgan Kaufmann, 6

  6. Gong Y, Lazebnik S (2011) Iterative quantization: a procrustean approach to learning binary codes. Proc CVPR: 817–824

  7. Guo Y, Zhao X, Ding G, Han J (2018) On trivial solution and high correlation problems in deep supervised hashing. Proc Thirty-Second AAAI Conf Artif Intell, New Orleans, Louisiana, USA, February 2–7, 2018, 2018. [Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16351

  8. Jiang Q-Y, Li W-J (2015) Scalable graph hashing with feature transformation. Proc Int Joint Conf Artif Intell

  9. Kang W-C, Li W-J, Zhou Z-H (2016) Column sampling based discrete supervised hashing. AAAI

  10. Kong W, Li W-J (2012) Isotropic hashing. NIPS: 1655–1663

  11. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst: 1097–1105

  12. Kulis B, Darrell T (2009) Learning to hash with binary reconstructive embeddings. NIPS 22

  13. Lai H, Pan Y, Liu Y, Yan S (2015) Simultaneous feature learning and hash coding with deep neural networks. Proc IEEE Conf Comput Vis Pattern Recogn: 3270–3278

  14. Li W-J, Wang S, Kang W-C (2016) Feature learning based deep supervised hashing with pairwise labels. IJCAI

  15. Li J, Wu Y, Zhao J, Lu K (2016) Multi-manifold sparse graph embedding for multi-modal image classification. Neurocomputing 173:501–510

    Article  Google Scholar 

  16. Li J, Zhao J, Lu K (2016) Joint feature selection and structure preservation for domain adaptation. IjCAI

  17. Li J, Wu Y, Zhao J, Lu K (2017) Low-rank discriminant embedding for multiview learning. IEEE Trans Cybernet 47(11):3516–3529

    Article  Google Scholar 

  18. Li J., Lu K, Huang Z, Zhu L, Shen HT.: (2018) Transfer independently together: a generalized framework for domain adaptation. IEEE TCYB

  19. Lin K, Yang H-F, Hsiao J-H, Chu-Song Chen (2015) Deep learning of binary hash codes for fast image retrieval. CVPR Workshops: 27–35

  20. Liong VE, Lu J, Wang G, Moulin P, Zhou J (2015) Deep hashing for compact binary codes learning. Proc IEEE Conf Comput Vis Pattern Recogn: 2475–2483

  21. Liu Y, Zhang D, Lu G, Ma W-Y (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282

    Article  MATH  Google Scholar 

  22. Liu W, Wang J, Ji R, Jiang Y-G, Chang S-F (2012) Supervised hashing with kernels. CVPR: 2074–2081

  23. Liu W, Mu C, Kumar S, Chang S-F (2014) Discrete graph hashing, in advances in neural information processing systems. MIT Press, Cambridge, pp 3419–3427

    Google Scholar 

  24. Liu H, Ji R, Wu Y, Liu W (2016) Towards optimal binary code learning via ordinal embedding. Proc AAAI Conf Artif Intell: 674–685

  25. Liu H, Wang R, Shan S, Chen X (2016) Deep supervised hashing for fast image retrieval. CVPR: 2064–2072

  26. Lu X, Song L, Xie R, Yang X, Zhang W (2017) Deep binary representation for efficient image retrieval. Adv Multimed

  27. Luo X, Nie L, He X, Wu Y, Zhen-Duo C, Xu X-S (2018) Fast scalable supervised hashing. In SIGIR

  28. Nie L, Yan S, Wang M, Hong R, Chua T-S (2012) Harvesting visual concepts for image search with complex queries. Multimed: 59–68

  29. Nie LN, Wang M, Zha Z, Chua T-S (2012) Oracle in image search: a content-based approach to performance prediction. TOIS

  30. Norouzi M, Fleet DJ (2011) Minimal loss hashing for compact binary codes. ICML: 353–360

  31. Shen F et al (2017) Asymmetric binary coding for image search. IEEE Trans Multimed 19(19):2022–2032

    Article  Google Scholar 

  32. Shen F, Gao X, Liu L, Yang Y, Shen H (2017) Deep asymmetric pairwise hashing. ACM MM

  33. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556

  34. Smeulders A, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of early years. IEEE Trans Pattern Anal Mach Intel 22:1349–1380

    Article  Google Scholar 

  35. Wan J, Wang D, Hoi SCH, Wu P, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: a comprehensive study. ACM Multimed: 157–166

  36. Wang D, Huang H, Lu C, Feng B-S, Nie L, Wen G, Mao X-L (2017) Supervised deep hashing for hierarchical labeled data. arXiv preprintarXiv:1704.02088

  37. Weiss Y, Torralba A, Fergus R (2008) Spectral hashing. NIPS

  38. Xia R, Pan Y, Lai H, Liu C, Yan S (2014) Supervised hashing for image retrieval via image representation learning, Proc. AAAI: 2156–2162

  39. Xie L, Shen J, Zhu L (2016) Online cross-modal hashing for Web image retrieval, Proc AAAI Conf Artif Intell, pp. 294–300

  40. Xie L, Shen J, Han J, Zhu L, Shao L (2017) Dynamic multi-view hashing for online image retrieval. Int Joint Conf Artif Intell: 3133–3139

  41. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013. Published in Proc. ECCV

  42. Zheng F, Shao L (2016) Learning cross-view binary identities for fast person re-identification. Int Joint Conf Artif Intell

  43. Zheng F, Tang Y, Shao L (2016) Hetero-manifold regularization for cross-modal hashing. IEEE Trans Pattern Anal Mach Intell

  44. Zhu H, Long M, Wang J, Cao Y (2016) Deep hashing network for efficient similarity retrieval. AAAI

  45. Zhu L, Huang Z, Chang X, Song J, Shen HT (2017) Exploring consistent preferences: discrete hashing with pair-exemplar for scalable landmark search. Proc ACM Int Conf Multimed (MM): 726–734

  46. Zhu L, Huang Z, Liu X et al (2017) Discrete multi-modal hashing with canonical views for robust mobile landmark search. IEEE Trans Multimed 19(9):2066–2079

    Article  Google Scholar 

  47. Zhu L, Huang Z, Li Z et al (2018) Exploring auxiliary context: discretesemantic transfer hashing for scalable image retrieval. IEEE Trans Neural Netw Learn Syst 99:1–13. https://doi.org/10.1109/tnnls.2018.2797248:1-13

    Article  Google Scholar 

  48. Zhuang B, Lin G, Shen C, Reid ID (2016) Fast training of triplet-based deep binary embedding networks. CVPR: 5955–5964

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wan, L., Fu, T. et al. Piecewise supervised deep hashing for image retrieval. Multimed Tools Appl 78, 24431–24451 (2019). https://doi.org/10.1007/s11042-018-7072-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-7072-4

Keywords

Navigation