Skip to main content
Log in

DOST: a distributed object segmentation tool

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel distributed object segmentation framework that allows one to extract potentially large coherent objects from digital images. The proposed approach requires minimum user supervision and permits to segment the objects accurately. It works in three steps starting with the user input in form of few mouse clicks on the target object. First, based on user input, the statistical characteristics of the target distributed object are modeled with Gaussian mixture model. This model serves as the primary segmentation of the object. In the second step, the segmentation result is refined by performing connected component analysis to reduce false positives. In the final step the resulting segmentation map is dilated to select the neighboring pixels that are potentially incorrectly classified; this allows us to recast the segmentation as a graph partitioning problem that can be solved using the well-known graph cut technique. Extensive experiments have been carried out on heterogeneous images to test the accuracy of the proposed method for the segmentation of various types of distributed objects. Examples of application of proposed technique in remote sensing to segment roads and rivers from aerial images are also presented. The visual and objective evaluation and comparison with the existing techniques show that the proposed tool can deliver optimal performance when applied to tough object segmentation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://www.di.unito.it/∼farid/Research/DOST.html

References

  1. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  2. Belongie S, Carson C, Greenspan H, Malik J (1998) Color- and texture-based image segmentation using em and its application to content-based image retrieval. In: Proceedings of IEEE International Conference Computer Vision (ICCV), pp 675–682

  3. Berman A, Dadourian A, Vlahos P (2000) Method for removing from an image the background surrounding a selected object, October 17 US Patent 6,134,346

  4. Berman A, Vlahos P, Dadourian A (2001) Method for removing from an image the background surrounding a selected subject by generating candidate mattes, September 11 US Patent 6,288,703

  5. Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. Mathematical morphology in image processing. Opt Eng 34:433–481

    Google Scholar 

  6. Bo P, Zhang L, Zhang D (2013) A survey of graph theoretical approaches to image segmentation. Pattern Recognit 46(3):1020–1038

    Article  Google Scholar 

  7. Bosamiya JH, Agrawal P, Roy PP, Balasubramanian R (2015) Script independent scene text segmentation using fast stroke width transform and grabcut. In: 3Rd IAPR Asian Conference on Pattern Recognition (ACPR), pp 151–155

  8. Bouman CA (1997) Cluster: an unsupervised algorithm for modeling Gaussian mixtures. Available from http://engineering.purdue.edu/bouman

  9. Boykov Y, Jolly M-P (2001) Interactive graph cuts for optimal boundary amp; region segmentation of objects in n-d images. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), vol 1, pp 105–112

  10. Boykov Y, Funka-Lea G (2006) Graph cuts and efficient N-D image segmentation. Int J Comput Vis 70(2):109–131

    Article  Google Scholar 

  11. Boykov Y, Veksler O (2006) Graph cuts in vision and graphics: Theories and applications. In: Paragios N, Chen Y, Faugeras O (eds) Handbook of mathematical models in computer vision. Springer, US, pp 79–96

  12. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  13. Cagnazzo M, Parrilli S, Poggi G, Verdoliva L (2007) Costs and advantages of object-based image coding with shape-adaptive wavelet transform. EURASIP J Image Video Process 2007(1):19–19

    Article  Google Scholar 

  14. Chen D, Li G, Sun Y, Kong J, Jiang G, Tang H, Ju Z, Yu H, Liu H (2017) An interactive image segmentation method in hand gesture recognition. Sensors 17(2):1–17

    Article  Google Scholar 

  15. Cheng MM, Prisacariu VA, Zheng S, Torr PHS, Rother C (2015) Densecut: densely connected crfs for realtime grabcut. Comput Graph Forum 34(7):193–201

    Article  Google Scholar 

  16. Chuang Y-Y, Curless B, Salesin DH, Szeliski R (2001) A bayesian approach to digital matting. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition (CVPR), vol 2, pp 264–271

  17. Delong A, Boykov Y (2008) A scalable graph-cut algorithm for N-D grids. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–8

  18. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Ser B-Stat Methodol 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  19. Farid MS, Mahmood A, Grangetto M (2016) Image de-fencing framework with hybrid inpainting algorithm. Signal Image Video Process 10(7):1193–1201

    Article  Google Scholar 

  20. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  21. Grünwald P (2005) A Tutorial Introduction to the Minimum Description Length Principle

  22. Guan Q, Hua M, Hu HG (2017) A modified grabcut approach for image segmentation based on local prior distribution. In: 2017 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), pp 122–126

  23. Hansen MH, Yu B (2001) Model selection and the principle of minimum description length. J Am Stat Assoc 96(454):746–774

    Article  MathSciNet  MATH  Google Scholar 

  24. Heimowitz A, Keller Y (2016) Image segmentation via probabilistic graph matching. IEEE Trans Image Process 25(10):4743–4752

    Article  MathSciNet  Google Scholar 

  25. Hernandez-Lopez FJ, Rivera M (2014) Change detection by probabilistic segmentation from monocular view. Mach Vis Appl 25(5):1175–1195

    Article  Google Scholar 

  26. Im J, Jensen JR, Tullis JA (2008) Object-based change detection using correlation image analysis and image segmentation. Int J Remote Sens 29(2):399–423

    Article  Google Scholar 

  27. Jian M, Jung C (2016) Interactive image segmentation using adaptive constraint propagation. IEEE Trans Image Process 25(3):1301–1311

    MathSciNet  Google Scholar 

  28. Johnson J, Krishna R, Stark M, Li L-J, Shamma D, Bernstein M, Li Fei-F (2015) Image retrieval using scene graphs. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition (CVPR)

  29. Juan O, Boykov Y (2006) Active graph cuts. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol 1, pp 1023–1029

  30. Khan MH, Shirahama K, Farid MS, Grzegorzek M (2016) Multiple human detection in depth images. In: Proceedings of International Workshop on Multimedia Signal Processing (MMSP), pp 1–6

  31. Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26(2):147–159

    Article  Google Scholar 

  32. Kontkanen P, Myllymäki P, Buntine W, Rissanen J, Tirrii H (2003) An MDL framework for data clustering

  33. Kuntimad G, Ranganath HS (1999) Perfect image segmentation using pulse coupled neural networks. IEEE Trans Neural Netw 10(3):591–598

    Article  Google Scholar 

  34. Li Y, Sun J, Tang C-K, Shum H-Y (2004) Lazy snapping. Trans Graph 23(3):303–308

    Article  Google Scholar 

  35. Lin D, Dai J, Jia J, He K, Sun J (2016) ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3159–3167

  36. Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley Series in Probability and Statistics, 1st edition. Wiley, New York

    Google Scholar 

  37. Liu J, Sun J (2010) Parallel graph-cuts by adaptive bottom-up merging. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2181–2188

  38. Mahalanobis PC (1936) On the generalised distance in statistics. Proc Natl Inst Sci, India 2(1):49–55

    MathSciNet  MATH  Google Scholar 

  39. Mnih V (2013) Massachusetts roads dataset. Available from http://www.cs.toronto.edu/vmnih/data/

  40. Mortensen E, Barrett W (1995) Intelligent scissors for image composition. In: Proceedings of the 22nd annual conference on computer graphics interaction technology SIGGRAPH ’95. ACM, pp 191–198

  41. Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Model Im Proc 60(5):349–384

    Article  MATH  Google Scholar 

  42. Mortensen E, Barrett W (1999) Toboggan-based intelligent scissors with a four-parameter edge model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol 2, pp 452–458

  43. Mortensen E, Morse B, Barrett W, Udupa J (1992) Adaptive boundary detection using ‘live-wire’ two-dimensional dynamic programming. In: Proceedings of Computer Cardiology, pp 635–638

  44. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  45. Pham DL, Chenyang X, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337

    Article  Google Scholar 

  46. Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the em algorithm. SIAM Rev 26(2):195–239

    Article  MathSciNet  MATH  Google Scholar 

  47. Ren D, Jia Z, Yang J, Kasabov NK (2017) A practical grabcut color image segmentation based on bayes classification and simple linear iterative clustering. IEEE Access 5:18480–18487

    Article  Google Scholar 

  48. Rissanen J (1983) A universal prior for integers and estimation by minimum description length. Ann Stat 11(2):416–431, 06

    Article  MathSciNet  MATH  Google Scholar 

  49. Rissanen J (2001) Strong optimality of the normalized ml models as universal codes and information in data. IEEE Trans Inf Theory 47(5):1712–1717

    Article  MathSciNet  MATH  Google Scholar 

  50. Rother C, Kolmogorov V, Blake A (2004) GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314

    Article  Google Scholar 

  51. Ruzon MA, Tomasi C (2000) Alpha estimation in natural images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol 1, pp 18–25

  52. Shen H, Pan WD, Wu D (2017) Predictive lossless compression of regions of interest in hyperspectral images with no-data regions. IEEE Trans Geosci Remote Sens 55(1):173–182

    Article  Google Scholar 

  53. Stockman G, Shapiro LG (2001) Computer Vision, 1st edition. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  54. Strandmark P, Kahl F (2010) Parallel and distributed graph cuts by dual decomposition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2085–2092

  55. Tappen MF, Freeman WT (2003) Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp 900–906

  56. Tazeem H, Farid MS, Mahmood A (2017) Improving security surveillance by hidden cameras. Multimed Tool Appl 76(2):2713–2732

    Article  Google Scholar 

  57. Udupa J, LaBlanc VR, Schmidt H, Imielinska C, Saha PK, Grevera GJ, Zhuge Y, Currie LM, Molholt P, Jin Y (2002) Methodology for evaluating image-segmentation algorithms. In: Medical imaging, pp 266–277

  58. Udupa JK, LeBlanc VR, Zhuge Y, Imielinska C, Schmidt H, Currie LM, Hirsch BE, Woodburn J (2006) A framework for evaluating image segmentation algorithms. Comput Med Imaging Graph 30(2):75–87

    Article  Google Scholar 

  59. Vezhnevets V, Growcut VK (2005) Interactive multi-label nd image segmentation by cellular automata. In: Proceedings of graphicon, pp 150–156

  60. Vineet V, Narayanan PJ (2008) CUDA cuts: fast Graph cuts on the GPU. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), pp 1–8

  61. von Neumann J (1951) The general and logical theory of automata. Cerebral Mechanisms in Behavior – The Hixon Symposium, 1–31

  62. Wallace RS, Kanade T (1990) Finding natural clusters having minimum description length. In: Proceedings of International Conference on Pattern Recognition (ICPR), vol 1, pp 438–442

  63. Wang J, Cohen MF (2005) An iterative optimization approach for unified image segmentation and matting. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), vol 2, pp 936–943

  64. Wang J, Cohen MF (2008) Image and video matting: a survey. Now Publishers Inc.

  65. Wang G, Lu J, Pan Z, Miao Q (2016) Color texture segmentation based on active contour model with multichannel nonlocal and tikhonov regularization. Multimed Tool Appl:1–12

  66. Wang R, Lv J, Ma S (2017) A mri image segmentation method based on medical semaphore calculating in medical multimedia big data environment. Multimed Tool Appl:1–21

  67. Wu Y, Peng X, Ruan K, Hu Z (2016) Improved image segmentation method based on morphological reconstruction. Multimed Tool Appl 76(19):1–13

    Google Scholar 

  68. Xu X, Geng W, Ju R, Yang Y, Ren T, Wu G (2014) OBSIR: object-based stereo image retrieval. In: Proceeding of IEEE International Conference on Multimedia and Expo (ICME), pp 1–6

  69. Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  70. Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089

    Article  Google Scholar 

  71. Yan C, Xie H, Yang D, Yin J, Zhang Y, Dai Q (2017) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst PP(99):1–12

    Google Scholar 

  72. Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2017) Effective uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst PP(99):1–10

    Google Scholar 

  73. Yang Q, Tang X, Wang C, Ye Z, Mo C (2007) Progressive cut an image cutout algorithm that models user intentions. IEEE Trans Multimed 14(3):56–66

    Article  Google Scholar 

  74. Yi P, Li C, Ou-Yang F-X, Chen W, Yong J-H (2015) JF-Cut: a parallel graph cut approach for large-scale image and video. IEEE Trans Image Process 24(2):655–666

    Article  Google Scholar 

  75. Zemene E, Pelillo M (2016) Interactive image segmentation using constrained dominant sets. In: Proceedings 14th European Conference Computer Vision (ECCV). Springer International Publishing, Cham, pp 278–294

  76. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid Farid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farid, M.S., Lucenteforte, M. & Grangetto, M. DOST: a distributed object segmentation tool. Multimed Tools Appl 77, 20839–20862 (2018). https://doi.org/10.1007/s11042-017-5546-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5546-4

Keywords

Navigation