Skip to main content
Log in

A content recognizability measure for image quality assessment considering the high frequency attenuating distortions

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The existing image quality assessment (IQA) techniques try to estimate image distortions regardless of their destructive effects on image contents. Analyzing the subjective scores of image quality databases shows that the worst opinions belong to distortions which make the images non-recognizable. In this paper, we investigate the effects of image contents clarity on human perception of quality. We found that among the several image distortions, the high frequency attenuating (HFA) ones are noticeable distortions which influence the image content recognizability, and accordingly the image understandability. To evaluate the severity of HFA distortions, we employ the non-negative matrix factorization (NMF), which has the ability to part-based image decomposition. When this decomposition is applied on an image, the resulting factors provide the latent information regarding the image parts. We employ the statistical characteristics of NMF factors to quantify the influence of HFA distortions on image contents. Our experiments performed on popular image quality databases show that the accuracy of our proposed measure is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115

    Article  Google Scholar 

  2. Botev ZI, Grotowski JF, Kroese DP (2010) Kernel density estimation via diffusion. Ann Stat 38(5):2916–2957

    Article  MathSciNet  MATH  Google Scholar 

  3. Boutsidis C, Gallopoulos E (2008) SVD based initialization: A head start for nonnegative matrix factorization. Pattern Recogn 41(4):1350–1362

    Article  MATH  Google Scholar 

  4. Carnec M, Le Callet P, Barba D (2008) Objective quality assessment of color images based on a generic perceptual reduced reference. Signal Process Image Commun 23(4):239–256

    Article  Google Scholar 

  5. Chandler DM (2013) Seven challenges in image quality assessment: Past, present, and future research. ISRN Signal Processing 2013:53. doi:10.1155/2013/905685

  6. Chandler DM, Hemami SS (2003) Suprathreshold image compression based on contrast allocation and global precedence. In: Electronic imaging, vol 2003, pp 73–86

  7. Chandler DM, Lim KH, Hemami SS (2006) Effects of spatial correlations and global precedence on the visual fidelity of distorted images. In: Electronic Imaging 2006, pp 60,570F–60,570F–15

  8. Chandler DM, Alam MM, Phan TD (2014) Seven challenges for image quality research. In: IS&T/SPIE Electronic Imaging, pp 901,402–901,402–14

  9. Concetta Morrone M, Burr DC (1997) Capture and transparency in coarse quantized images. Vis Res 37(18):2609–2629

    Article  Google Scholar 

  10. Donoho D (2003) When does non-negative matrix factorization give a correct decomposition into parts? In: Advances in neural information processing systems, p None

  11. Flusser J, Suk T, Boldys J, Zitová B (2015) Projection operators and moment invariants to image blurring. IEEE Trans Pattern Anal Mach Intell 37 (4):786–802

    Article  Google Scholar 

  12. Gao W, Mermer C, Kim Y (2002) A de-blocking algorithm and a blockiness metric for highly compressed images. IEEE Trans Circuits Syst Video Technol 12 (12):1150–1159

    Article  Google Scholar 

  13. Gaubatz M, Hemami SS (2007) MeTriX MuX version 1.1 visual quality assessment package [online]. http://foulard.ece.cornell.edu/gaubatz/metrix_mux/, accessed: 2016-March-07

  14. Gonzalez EF, Zhang Y (2005) Accelerating the lee-seung algorithm for non-negative matrix factorization. Dept Comput Appl Math, Rice Univ, Houston, TX, Tech Rep TR-05-02

  15. Goodman J, Pearson D (1979) Multidimensional scaling of multiply-impaired television pictures. IEEE Trans Syst Man Cybern 9(6):353–356

    Article  Google Scholar 

  16. Group VQE (2003) Final report from the video quality experts group on the validation of objective models of video quality assessment

  17. Gu K, Zhai G, Lin W (2015) The analysis of image contrast: From quality assessment to automatic enhancement. IEEE Transactions on Cybernetics

  18. Ji G, Ni X, Bae H (2008) A full-reference image quality assessment algorithm based on haar wavelet transform. In: 2008 IEEE international conference on Computer science and software engineering, vol 1, pp 791–794

  19. Kamble V, Bhurchandi K (2015) No-reference image quality assessment algorithms: a survey. Optik-International Journal for Light and Electron Optics 126(11):1090–1097

    Article  Google Scholar 

  20. Khosravi MH, Hassanpour H (2016) Model-based full reference image blurriness assessment. Multimedia Tools and Applications pp 1–15, doi:10.1007/s11042-015-3149-5

  21. Larson EC, Chandler DM (2010) Most apparent distortion: full-reference image quality assessment and the role of strategy. J Electron Imaging 19(1):011,006–011,006–21

    Article  Google Scholar 

  22. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791. doi:10.1038/44565,10.1038/44565

    Article  MATH  Google Scholar 

  23. Li L, Lin W, Wang X, Yang G, Bahrami K, Kot AC (2016) No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans Cybern 46(1):39–50. doi:10.1109/TCYB.2015.2392129. http://www.ncbi.nlm.nih.gov/pubmed/25647763

  24. Liu H, Wu Z, Li X, Cai D, Huang TS (2012) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Intell 34 (7):1299–1311

    Article  Google Scholar 

  25. Liu TJ, Lin W, Kuo C (2013) Image quality assessment using multi-method fusion. IEEE Trans Image Process 22(5):1793–1807

    Article  MathSciNet  MATH  Google Scholar 

  26. Manap RA (2015) Non-distortion-specific no-reference image quality assessment: A survey. Information Sciences

  27. Marziliano P, Dufaux F, Winkler S, Ebrahimi T (2004) Perceptual blur and ringing metrics: application to JPEG2000. Signal Process Image Commun 19(2):163–172

    Article  Google Scholar 

  28. Merigan WH, Pham HA (1998) V4 lesions in macaques affect both single-and multiple-viewpoint shape discriminations. Vis Neurosci 15(02):359–367

    Article  Google Scholar 

  29. Narwaria M, Lin W (2012) SVD-based quality metric for image and video using machine learning. IEEE Trans Syst Man Cybern B Cybern 42(2):347–364

    Article  Google Scholar 

  30. Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5 (2):111–126

    Article  Google Scholar 

  31. Paatero P, Tapper U, Aalto P, Kulmala M (1991) Matrix factorization methods for analysing diffusion battery data. Journal of Aerosol Science 22, Supplement 1:S273–S276, doi:10.1016/S0021-8502(05)80089-8

  32. Park C, Kim J, Ko S (2007) Fast blind measurement of blocking artifacts in both pixel and DCT domains. J Math Imaging Vision 28(3):279–284

    Article  Google Scholar 

  33. Pauca VP, Piper J, Plemmons RJ (2006) Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl 416(1):29–47

    Article  MathSciNet  MATH  Google Scholar 

  34. Pollen DA (1999) On the neural correlates of visual perception. Cereb Cortex 9 (1):4–19

    Article  Google Scholar 

  35. Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F (2009) TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv Mod Radioelectron 10(4):30– 45

    Google Scholar 

  36. Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F (2015) Image database TID2013: peculiarities, results and perspectives. Signal Process Image Commun 30:57–77

    Article  Google Scholar 

  37. Rao DV, Reddy LP (2009) Contrast weighted perceptual structural similarity index for image quality assessment. In: India Conference (INDICON), 2009 Annual IEEE, pp 1–4. doi:10.1109/INDCON.2009.5409432

  38. Rehman A, Wang Z (2012) Reduced-reference image quality assessment by structural similarity estimation. IEEE Trans Image Process 21(8):3378–3389

    Article  MathSciNet  MATH  Google Scholar 

  39. Rouse DM, Hemami SS (2007) Quantifying the use of structure in cognitive tasks. In: Electronic Imaging 2007, pp 64,921O–64,921O–10

  40. Rouse DM, Hemami SS (2008) Analyzing the role of visual structure in the recognition of natural image content with multi-scale. In: SSIM Electronic Imaging 2008, pp 680,615–680,615–14

  41. Rouse DM, Pepion R, Hemami SS, Le Callet P (2009) Image utility assessment and a relationship with image quality assessment. In: IS&T/SPIE Electronic Imaging, pp 724,010–724,010–14

  42. Sampat MP, Wang Z, Gupta S, Bovik AC, Markey MK (2009) Complex wavelet structural similarity: A new image similarity index. IEEE Trans Image Process 18(11):2385–2401

    Article  MathSciNet  MATH  Google Scholar 

  43. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–444

    Article  Google Scholar 

  44. Sheikh HR, Wang Z, Cormack L, Bovik AC (2005) LIVE image quality assessment database release 2

  45. Soundararajan R, Bovik AC (2012) RRED indices: Reduced reference entropic differencing for image quality assessment. IEEE Trans Image Process 21(2):517–526

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang Z (2011) Applications of objective image quality assessment methods [applications corner]. IEEE Signal Process Mag 28(6):137–142

    Article  Google Scholar 

  47. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: Proceedings of the 37th IEEE asilomar conference on signals, systems and computers, vol 2, pp 1398–1402

  48. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612

    Article  Google Scholar 

  49. Wang S, Deng C, Lin W, Huang G, Zhao B (2016) NMF-based image quality assessment using extreme learning machine. IEEE transactions on cybernetics

  50. Wu J, Lin W, Shi G, Liu A (2013) Perceptual quality metric with internal generative mechanism. IEEE Trans Image Process 22(1):43–54

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang L, Zhang D, Mou X (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhou L, Zhang Z (2014) No-reference image quality assessment based on noise, blurring and blocking effect. Optik-International Journal for Light and Electron Optics

  53. Zhu J, Wang N (2012) Image quality assessment by visual gradient similarity. IEEE Trans Image Process 21(3):919–933

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Khosravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, M.H., Hassanpour, H. & Ahmadifard, A. A content recognizability measure for image quality assessment considering the high frequency attenuating distortions. Multimed Tools Appl 77, 7357–7382 (2018). https://doi.org/10.1007/s11042-017-4636-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4636-7

Keywords

Navigation