Skip to main content
Log in

Amalgamation of iterative double automated thresholding and morphological filtering: a new proposition in the early detection of cerebral aneurysm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Cerebral aneurysm (CA) has been emerging as one of the life threatening diseases in adults which results due to the pathological distension of cerebral arteries. Rupture of cerebral aneurysms causes subarachnoid hemorrhage (SAH) which is having a miserable prognosis. SAH is one of the cerebrovascular diseases with the highest mortality. With the rapid improvement in the field of medical image processing, prior detection of cerebral (intracranial) aneurysms before rupture is on a high rise. In this communication, we have made one novel attempt to detect CA from medical images through efficient amalgamation of automated thresholding and morphological filtering. In regard to this, an iterative double automated thresholding (IDAT) algorithm has been proposed which exhibits superiority over other existing thresholding techniques like Sauvola, Niblack and Otsu’s threshold. Efficiency of the proposed algorithm has been validated over a number of digital subtraction angiography (DSA) images in terms of accuracy, sensitivity and specificity. The performance of the proposed method has also been compared with other existing methods for CA detection and finally its supremacy has been substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6:
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Basak K, Patra R, Manjunatha M, Dutta PK (2012) Automated detection of air embolism in OCT contrast imaging: anisotropic diffusion and active contour based approach. 3rd International Conferene on Emerging Applications of Information Technology (EAIT), pp 110–115

  2. Bhadri PR, Kumar AS, Salgaonkar VA, Kumar G, Beyette FR Jr, Clark JF (2005) Development of an integrated hardware and software platform for the rapid detection of cerebral aneurysm, in 48th Midwest symposium on circuits and systems. IEEE 2:1924–1927. doi:10.1109/MWSCAS.2005.1594502

    Google Scholar 

  3. Bisbal J, Engelbrecht G, Villa-Uriol M-C, Frangi AF (2011) Prediction of cerebral aneurysm rupture using hemodynamic, morphologic and clinical features: a data mining approach. In: Database and expert systems applications. Springer, pp 59–73

  4. Brady AR, Thompson S (2002) Making predictions from hierarchical models for complex longitudinal data, with application to aneurysm growth. MRC Biostatistics Unit, Cambridge, pp 1–25

  5. Brain aneurysms foundations, cerebral aneurysm resources. Available: http://bafoundations.com/ImageGallery.html, 2013

  6. Cárdenes R, Pozo JM, Bogunovic H, Larrabide I, Frangi AF (2011) Automatic aneurysm neck detection using surface voronoi diagrams. IEEE Transactions on Medical Imaging 30(10):1863–1876. doi:10.1109/TMI.2011.2157698

    Article  Google Scholar 

  7. Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24(4):457–467. doi:10.1109/TMI.2005.844159

    Article  Google Scholar 

  8. Dr. Balaji Anvekar’s neuroradiology cases, Neuroradiology cases. Available: http://www.yousaytoo.com/aneurysm-dsa/1896957

  9. Farnoush A, Qian Y, Takao H, Murayama Y, Avolio A (2012) Effect of saccular aneurysm and parent artery morphology on hemodynamics of cerebral bifurcation aneurysms. In: 34th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, San Diego, pp. 6677–6680

    Google Scholar 

  10. Hentschke CM, Beuing O, Nickl R, Tonnies KD (2011) Automatic cerebral aneurysm detection in multimodal angiographic images. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE, pp 3116–3120. doi:10.1109/NSSMIC.2011.6152566

  11. Hentschke CM, Tonnies K, Beuing O, Nickl R (2012) A new feature for automatic aneurysm detection, 9th IEEE international symposium on biomedical imaging (ISBI). IEEE, Barcelona, Spain, pp. 800–803. doi:10.1109/ISBI.2012. 6235669

    Google Scholar 

  12. Kroon M (2011) Simulation of cerebral aneurysm growth and prediction of evolving rupture risk. Model Simul Eng 2011:3. doi:10.1155/2011/289523

    Google Scholar 

  13. Li M, Cheng Y, Li Y, Fang C, Chen S, Wang HD, Xu H (2009) Large-cohort comparison between three-dimensional time-of-flight magnetic resonance and rotational digital subtraction angiographies in intracranial aneurysm detection. Stroke 40(9):3127–3129

  14. Loong T (2003) Understanding sensitivity and specificity with the right side of the brain. BMJ: Br Med J 327(7417):716

    Article  Google Scholar 

  15. McKinney A, Palmer C, Truwit C, Karagulle A, Teksam M (2008) Detection of aneurysms by 64-section multidetector CT angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. Am J Neuroradiol 29(3):594–602

    Article  Google Scholar 

  16. Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, Kolega J (2007) Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38(6):1924–1931. doi:10.1161/STROKEAHA.106.481234

    Article  Google Scholar 

  17. Mikhal J, Lopez Penha DJ, Slump CH, Geurts BJ (2010) Immersed boundary method predictions of shear stresses for different flow topologies occuring in cerebral aneurysms, European conference on computational fluid dynamics. ECCOMAS, Lisbon

    Google Scholar 

  18. Mitra J, Chandra A (2013) Detection of cerebral aneurysm by performing thresholding-spatial filtering-thresholding operations on digital subtraction angiogram. Advances in computing and information technology. Springer, Berlin Heidelberg, pp 915–921. doi:10.1007/978-3-642-31552-7_93

  19. Mitra J, Chandra A, Halder T (2013) Peak trekking of hierarchy mountain for the detection of cerebral aneurysm using modified hough circle transform. Electron Lett Comput Vis Image Anal 12(1):57–84

    Google Scholar 

  20. Niblack W (1986) An introduction to image processing. Prentice-Hall, Englewood Cliffs, NJ, pp. 115–116

    Google Scholar 

  21. Nikravanshalmani A, Qanadli SD, Ellis TJ, Crocker M, Ebrahimdoost Y, Karamimohammdi M, Dehmeshki J (2010) Three-dimensional semi-automatic segmentation of intracranial aneurysms in CTA, 10th IEEE international conference on information technology and applications in biomedicine (ITAB). IEEE, Corfu, pp. 1–4. doi:10.1109/ITAB.2010.5687759

    Google Scholar 

  22. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  23. Piccinelli M, Veneziani A, Steinman DA, Remuzzi A, Antiga L (2009) A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans Med Imaging 28(8):1141–1155. doi:10.1109/TMI.2009.2021652

    Article  Google Scholar 

  24. Rahman M, Smietana J, Hauck E, Hoh B, Hopkins N, Siddiqui A, Levy EI, Meng H, Mocco J (2010) Size ratio correlates with intracranial aneurysm rupture status a prospective study. Stroke 41(5):916–920. doi:10.1161/STROKEAHA.109.574244

    Article  Google Scholar 

  25. Sauvola J, Pietikainen M (2000) Adaptive document image binarization. Pattern Recogn 33(2):225–236

    Article  Google Scholar 

  26. Shimogonya Y, Itoh K, Kumamaru H (2010) Computational simulation of blood flow dynamics using an anatomically realistic artery model constructed from medical images, World Automation Congress (WAC), IEEE, Kobe: TSI Press, pp 1–5, ISBN:978–1–4244–9673-0

  27. Uchiyama Y, Yamauchi M, Ando H, Yokoyama R, Hara T, Fujita H, Iwama T, Hoshi H (2006) Automated classification of cerebral arteries in MRA images and its application to maximum intensity projection, 28th annual international conference of the IEEE engineering in medicine and biology society, EMBS’06. IEEE, New York, pp. 4865–4868. doi:10.1109/IEMBS.2006.260438

    Google Scholar 

  28. Ujiie H, Tamano Y, Sasaki K, Hori T (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48(3):495–503

    Article  Google Scholar 

  29. Utami N, Zakaria H, Mengko TL, Santoso OS (2011) Role of pressure and wall shear stress in initiation and development of cerebral aneurysms, 2nd international conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME). IEEE, Bandung, pp. 310–314. doi:10.1109/ICICI-BME.2011.6108629

    Google Scholar 

  30. Valencia C, Villa-Uriol M, Pozo J, Frangi A (2010) Morphological descriptors as rupture indicators in middle cerebral artery aneurysms, 32nd annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, Buenos Aires, pp. 6046–6049

    Google Scholar 

  31. Villablanca JP, Jahan R, Hooshi P, Lim S, Duckwiler G, Patel A, Sayre J, Martin N, Frazee J, Bentson J et al (2002) Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography. Am J Neuroradiol 23(7):1187–1198

    Google Scholar 

  32. Wang Y, Courbebaisse G, Zhu YM (2011) Segmentation of giant cerebral aneurysms using a multilevel object detection scheme based on lattice Boltzmann method, international conference on signal processing, communications and computing (ICSPCC). IEEE, Xi’an, pp. 1–4. doi:10.1109/ICSPCC.2011.6061695

    Google Scholar 

  33. Wardlaw JM, White PM (2000) The detection and management of unruptured intracranial aneurysms. Brain 123(2):205–221. doi:10.1093/brain/123.2.205

    Article  Google Scholar 

  34. Wermer MJ, Van der Schaaf IC, Algra A, Rinkel GJ (2007) Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics an updated meta-analysis. Stroke 38(4):1404–1410. doi:10.1161/01.STR.0000260955.51401.cd

    Article  Google Scholar 

  35. Wiebers DO (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362(9378):103–110

    Article  Google Scholar 

  36. Wu J, Zhang G, Cao Y, Cui Z (2009) Research on cerebral aneurysm image recognition method using bayesian classification, 2009 international symposium on information processing (ISSP’09), pp. 58–62

  37. Zakaria H, Kurniawan A, Mengko TLR, Santoso OS (2011) Detection of cerebral aneurysms by using time based parametric color coded of cerebral angiogram. International Conference on Electrical Engineering and Informatics, Bandung. doi:10.1109/ICEEI.2011.6021503

    Book  Google Scholar 

  38. Zubillaga AF, Guglielmi G, Viñuela F, Duckwiler GR (1994) Endovascular occlusion of intracranial aneurysms with electricallly detachable coils: correlation of aneurysm neck size and treatment results. AJNR Am J Neuroradiol 15(5):815–820

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, A., Mondal, S. Amalgamation of iterative double automated thresholding and morphological filtering: a new proposition in the early detection of cerebral aneurysm. Multimed Tools Appl 76, 23957–23979 (2017). https://doi.org/10.1007/s11042-016-4149-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4149-9

Keywords

Navigation