Skip to main content
Log in

Multiresolution coding of motion capture data for real-time multimedia applications

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this work, we present a novel and efficient method for coding of motion capture (MoCap) data obtained from recording of human actions. MoCap data is represented as hierarchies of joints and parameterized by translation and rotation of channels or degree-of-freedom (DOF) in a sequence of frames as a function of time. The proposed method approximates the MoCap data of each channel independently using multiresolution discrete wavelet transform (DWT). In order to improve the performance, a skeleton dependent quantization of wavelet coefficients is used that computes a local threshold of each joint based on a global threshold and depth of the joint in the hierarchy of joints. The multiresolution DWT based coding allows to control the bitrate and to decode (reconstruct) the single instance of compressed MoCap data into multiple instances from high to low resolution (quality). We also compared the performance of proposed method with recent and state of the art methods. The proposed method yields smaller storage space and faster encoding time. The method is well suitable for real-time multimedia applications due to its low time and space requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arikan O (2006) Compression of motion capture databases. ACM Trans Graph 25(3):890–897. doi:10.1145/1141911.1141971

  2. Beaudoin P, Poulin P, van de Panne M (2007) Adapting wavelet compression to human motion capture clips, pp 313–318

  3. Cai W, Leung VCM, Hu L (2014) A cloudlet-assisted multiplayer cloud gaming system. MONET 19(2):144–152. doi:10.1007/s11036-013-0485-4

  4. Cheng I, Firouzmanesh A, Basu A (2015) Perceptually motivated lspiht for motion capture data compression. Comput Graph 51(C):1–7. doi:10.1016/j.cag.2015.05.002

  5. Choensawat W, Nakamura M, Hachimura K (2014) Genlaban: a tool for generating labanotation from motion capture data. Multimedia Tools Appl 74(23):10,823–10,846. doi:10.1007/s11042-014-2209-6

  6. Deng C, Lin W, Cai J (2012) Content-based image compression for arbitrary-resolution display devices. IEEE Trans Multimedia 14(4):1127–1139. doi:10.1109/TMM.2012.2191270

  7. DeVore R, Jawerth B, Lucier B (1992) Image compression through wavelet transform coding. IEEE Trans Inf Theory 38(2):719–746. doi:10.1109/18.119733

  8. Firouzmanesh A, Cheng I, Basu A (2011) Perceptually guided fast compression of 3-d motion capture data. IEEE Trans Multimedia 13(4):829–834. doi:10.1109/TMM.2011.2129497

  9. Garbas JU, Pesquet-Popescu B, Kaup A (2011) Methods and tools for wavelet-based scalable multiview video coding. IEEE Trans Circuits Syst Video Technol 21(2):113–126. doi:10.1109/TCSVT.2011.2105552

  10. Gu Q, Peng J, Deng Z (2009) Compression of human motion capture data using motion pattern indexing. Comput Graph Forum 28(1):1–12

    Article  Google Scholar 

  11. Hachicha W, Kaaniche M, Beghdadi A, Cheikh F (2015) Efficient inter-view bit allocation methods for stereo image coding. IEEE Trans Multimedia 17(6):765–777. doi:10.1109/TMM.2015.2417099

  12. Hou J, Chau LP, Magnenat-Thalmann N, He Y (2015) Human motion capture data tailored transform coding. IEEE Trans Vis Comput Graph 21(7):848–859. doi:10.1109/TVCG.2015.2403328

  13. Ikemoto L, Arikan O, Forsyth D (2006) Knowing when to put your foot down. In: I3D ’06: Proceedings of the 2006 symposium on interactive 3D graphics and games. ACM, pp 49–53. doi:10.1145/1111411.1111420

  14. Khan MA (2012) A new method for video data compression by quadratic bézier curve fitting. SIViP 6:19–24. doi:10.1007/s11760-010-0165-9

  15. Khan MA (2016) An efficient algorithm for compression of motion capture signal using multidimensional quadratic bézier curve break-and-fit method. Multidim Syst Signal Process 27(1):121–143. doi:10.1007/s11045-014-0293-4

  16. Lawrence N Mocap toolbox for matlab. Available on-line at http://www.cs.man.ac.uk/neill/mocap (2011)

  17. Lin JS, Kulic D (2014) Online segmentation of human motion for automated rehabilitation exercise analysis. IEEE Trans Neural Syst Rehabil Eng 22(1):168–180. doi:10.1109/TNSRE.2013.2259640

  18. Liu L, Jones A, Antonopoulos N, Ding Z, Zhan Y (2015) Performance evaluation and simulation of peer-to-peer protocols for massively multiplayer online games. Multimedia Tools Appl 74(8):2763–2780. doi:10.1007/s11042-013-1662-y

  19. Patoli M, Gkion M, Newbury P, White M (2010) Real time online motion capture for entertainment applications. In: 3rd IEEE international conference on digital game and intelligent toy enhanced learning (DIGITEL), 2010, pp 139–145. doi:10.1109/DIGITEL.2010.39

  20. Rahman MA (2014) Multimedia environment toward analyzing and visualizing live kinematic data for children with hemiplegia. Multimedia Tools Appl 74(15):5463–5487. doi:10.1007/s11042-014-1864-y

  21. Sattler M, Sarlette R, Klein R (2005) Simple and efficient compression of animation sequences. ACM, New York, pp 209–217. doi:10.1145/1073368.1073398

  22. Sheikh A, Fiandrotti A, Magli E (2014) Distributed scheduling for low-delay and loss-resilient media streaming with network coding. IEEE Trans Multimedia 16 (8):2294–2306. doi:10.1109/TMM.2014.2357716

  23. Suzuki T, Ikehara M (2010) Integer dct based on direct-lifting of dct-idct for lossless-to-lossy image coding. IEEE Trans Image Process 19(11):2958–2965. doi:10.1109/TIP.2010.2051867

  24. Tournier M, Wu X, Courty N, Arnaud E, Revret L (2009) Motion compression using principal geodesics analysis. Comput Graphics Forum 28(2):355–364. doi:10.1111/j.1467-8659.2009.01375.x

  25. Wang CW, Jeng JH (2012) Image compression using pca with clustering. In: International symposium on intelligent signal processing and communications systems (ISPACS), 2012, pp 458–462. doi:10.1109/ISPACS.2012.6473533

  26. Zhang M, Tong X (2014) A new algorithm of image compression and encryption based on spatiotemporal cross chaotic system. Multimedia Tools Appl 74 (24):11,255–11,279. doi:10.1007/s11042-014-2227-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murtaza Ali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A. Multiresolution coding of motion capture data for real-time multimedia applications. Multimed Tools Appl 76, 16683–16698 (2017). https://doi.org/10.1007/s11042-016-3944-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3944-7

Keywords

Navigation