Skip to main content
Log in

Robust regression based face recognition with fast outlier removal

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new robust face recognition method through pixel selection. The method is based on the subspace assumption that a face can be represented by a linear combination in terms of the samples from the same subject. In order to obtain a reliable representation, only a subset of pixels with respect to smallest residuals are taken into the estimation. Outlying pixels which deviate from the linear model of the majority are removed using a robust estimation technique — least trimmed squares regression (LTS). By this method, the representation residual with each class is computed from only the clean data, which gives a more discriminant classification rule. The proposed algorithm provides a novel way to tackle the crucial occlusion problem in face recognition. Evaluation of the proposed algorithm is conducted on several public databases for the cases of both artificial and nature occlusions. The promising results show its efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Basri R, Jacobs D (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233

    Article  Google Scholar 

  2. Deng W, Hu J, Guo J (2012) Extended SRC: undersampled face recognition via intra-class variant dictionary. IEEE Trans Pattern Anal Mach Intell PP(99):1

    Google Scholar 

  3. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mac. Intell 23(6):643–660

    Article  Google Scholar 

  4. Hawkins DM, Olive DJ (1999) Improved feasible solution algorithms for high breakdown estimation. Comput Stat Data Anal 30(1):1–11

    Article  MathSciNet  MATH  Google Scholar 

  5. He X, Cai D, Niyogi P. (2005) Laplacian score for feature selection. In: Proc. of advances in neural information processing systems

  6. Ho J, Yang MH, Lim J, Lee KC, Kriegman D (2003) Clustering appearances of objects under varying illumination conditions. In: Proc. IEEE int. conf. computer vision and pattern recognition, pp 11–18

  7. Hong R, Wang M, Gao Y, Tao D, Li X, Wu X (2013) Image annotation by multiple-instance learning with discriminative feature mapping and selection. IEEE Trans Cybern 44(5):669–680

    Article  Google Scholar 

  8. Hubert M, Rousseeuw PJ, Aelst Sv (2008) High-breakdown robust multivariate methods. Stat Sci 23(1):92–119

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27 (5):684–698

    Article  Google Scholar 

  10. Lee KC, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  11. Martinez A, Benavente R (1998) The AR face database. CVC, Tech. Rep

  12. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32 (11):2106–2112

    Article  Google Scholar 

  13. Rousseeuw PJ (1984) Least median of squares regression. J Amer Stat Assoc 79(388)

  14. Rousseeuw PJ, Driessen K (2006) Computing LTS regression for large data sets. Data Min Knowl Discov 12:29–45

    Article  MathSciNet  MATH  Google Scholar 

  15. Shen F, Shen C, van den Hengel A, Tang Z (2013) Approximate least trimmed sum of squares fitting and applications in image analysis. IEEE Trans Image Process 22(5):1836–1847

    Article  MathSciNet  Google Scholar 

  16. Shen F, Shen C, Hill R, van den Hengel A, Tang Z (2014) Fast approximate l minimization: speeding up robust regression. Comput Stat Data Anal 77(0):25–37

    Article  MathSciNet  Google Scholar 

  17. Shen F, Shen C, Shi Q, van den Hengel A, Tang Z (2013) Inductive hashing on manifolds In: IEEE conference on computer vision and pattern recognition (CVPR’13)

  18. Shen F, Tang Z, Xu J (2013) Locality constrained representation based classification with spatial pyramid patches. Neurocomputing 101(0):104–115

    Article  Google Scholar 

  19. Shi Q, Eriksson A, van den Hengel A, Shen C (2011) Is face recognition really a compressive sensing problem?. In: Proc. IEEE int. conf. computer vision and pattern recognition, pp 553–560

  20. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Patt Anal Mach Intell 25:1615–1618

    Article  Google Scholar 

  21. Wang M, Hua XS, Hong R, Tang J, Qi GJ, Song Y (2009) Unified video annotation via multigraph learning. IEEE Trans Circ Syst Video Technol 19(5):733–746

    Article  Google Scholar 

  22. Wang M, Hua XS, Tang J, Hong R (2009) Beyond distance measurement: constructing neighborhood similarity for video annotation. IEEE Trans Multimedia 11(3):465–476

    Article  Google Scholar 

  23. Wang M, Ni B, Hua XS, Chua TS (2012) Assistive tagging: a survey of multimedia tagging with human-computer joint exploration. ACM Comput Surveys 44(4):25

    Article  Google Scholar 

  24. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227

    Article  Google Scholar 

  25. Yang Y, Huang Z, Shen HT, Zhou X (2011) Mining multi-tag association for image tagging. World Wide Web 14(2):133–156

    Article  Google Scholar 

  26. Yang Y, Huang Z, Yang Y, Liu J, Shen HT, Luo J (2013) Local image tagging via graph regularized joint group sparsity. Pattern Recog 46(5):1358–1368

    Article  MATH  Google Scholar 

  27. Yang Y, Yang Y, Huang Z, Shen HT, Nie F (2011) Tag localization with spatial correlations and joint group sparsity. In: IEEE conference on computer vision and pattern recognition, pp 881–888. IEEE

  28. Yang Y, Yang Y, Shen HT (2013) Effective transfer tagging from image to video. ACM Trans Multimedia Comput Commun Appl 9(2):14:1–14:20

    Article  Google Scholar 

  29. Yang Y, Yang Y, Shen HT, Zhang Y, Du X, Zhou X (2013) Discriminative nonnegative spectral clustering with out-of-sample extension. IEEE Trans Knowl Data Eng 25(8):1760–1771

    Article  Google Scholar 

  30. Yang Y, Zha ZJ, Gao Y, Zhu X, Chua TS (2014) Exploiting web images for semantic video indexing via robust sample-specific loss. IEEE Trans Multimedia 16(6):1677–1689

    Article  Google Scholar 

  31. Zhang L, Gao Y, Hong C, Feng Y, Zhu J, Cai D (2013) Feature correlation hypergraph: exploiting high-order potentials for multimodal recognition. IEEE Trans Cybern 44(8):1408–1419

    Article  Google Scholar 

  32. Zhang L, Gao Y, Lu K, Shen J, Ji R (2014) Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Trans Multimedia 16(2):470–479

    Article  Google Scholar 

  33. Zhang L, Gao Y, Xia Y, Dai Q, Li X (2014) A fine-grained image categorization system by cellet-encoded spatial pyramid modeling. IEEE Trans Ind Electron:1

  34. Zhang L, Han Y, Yang Y, Song M, Yan S, Tian Q (2013) Discovering discriminative graphlets for aerial image categories recognition. IEEE Trans Image Process 22(12):5071–5084

    Article  MathSciNet  Google Scholar 

  35. Zhang L, Song M, Liu X, Bu J, Chen C (2013) Fast multi-view segment graph kernel for object classification. Signal Process 93(6):1597–1607

    Article  Google Scholar 

  36. Zhang L, Song M, Liu X, Sun L, Chen C, Bu J (2014) Recognizing architecture styles by hierarchical sparse coding of blocklets. Inf Sci 254:141–154

    Article  Google Scholar 

  37. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proc. IEEE int. conf. computer vision, pp 471–478

  38. Zhang L, Yang Y, Gao Y, Yu Y, Wang C, Li X (2014) A probabilistic associative model for segmenting weakly-supervised images. IEEE Trans Image Process 23(9):4150–4159

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Wankou Yang was supported by NSFC under project No.61375001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Yang, W., Li, H. et al. Robust regression based face recognition with fast outlier removal. Multimed Tools Appl 75, 12535–12546 (2016). https://doi.org/10.1007/s11042-014-2340-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2340-4

Keywords

Navigation