Skip to main content
Log in

A multiple instance learning based framework for semantic image segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Most image segmentation algorithms extract regions satisfying visual uniformity criteria. Unfortunately, because of the semantic gap between low-level features and high-level semantics, such regions usually do not correspond to meaningful parts. This has motivated researchers to develop methods that, by introducing high-level knowledge into the segmentation process, can break through the performance ceiling imposed by the semantic gap. The main disadvantage of those methods is their lack of flexibility due to the assumption that such knowledge is provided in advance. In content-based image retrieval (CBIR), relevance feedback (RF) learning has been successfully applied as a technique aimed at reducing the semantic gap. Inspired by this, we present a RF-based CBIR framework that uses multiple instance learning to perform a semantically-guided context adaptation of segmentation parameters. A partial instantiation of this framework that uses mean shift-based segmentation is presented. Experiments show the effectiveness and flexibility of the proposed framework on real images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bhanu B, Lee S, Das S (1995) Adaptive image segmentation using genetic and hybrid search methods. IEEE Trans Aerosp Electron Syst 31(4):1268–1291

    Article  Google Scholar 

  2. Bhanu B, Lee S, Ming J (1995) Adaptive image segmentation using a genetic algorithm. IEEE Trans Syst Man Cybern 25(12):1543–1567

    Article  Google Scholar 

  3. Borenstein E, Ullman S (2004) Learning to segment. In: European conference on computer vision, pp 315–328

  4. Carson C, Belongie S, Greenspan H, Malik J (2002) Blobworld: color and texture-based image segmentation using EM and its applications to image querying and classification. IEEE Trans Pattern Anal Mach Intell 24(8):1026–1038

    Article  Google Scholar 

  5. Chen Y, Wang J (2002) A region-based fuzzy feature matching approach to content-based image retrieval. IEEE Trans Pattern Anal Mach Intell 24(9):1252–1267

    Article  Google Scholar 

  6. Comaniciu D (2003) An algorithm for data-driven bandwith selection. IEEE Trans Pattern Anal Mach Intell 25(2):281–288

    Article  Google Scholar 

  7. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  8. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60

    Article  Google Scholar 

  9. Dietterich TG, Lathrop RH, Lozano-Pérez T (1997) Solving the multiple instance problem with axis-parallel rectangles. Artif Intell 89(1–2):31–71

    Article  MATH  Google Scholar 

  10. Duda RO, Hart PE, Stork DG (2000) Pattern classification, chapter 4, 2nd edn. Wiley, New York

    Google Scholar 

  11. Fan J, Yau DKY, Elmagarmid AK, Aref WG (2001) Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans Image Process 10(10):1454–1466

    Article  MATH  Google Scholar 

  12. Gondra I, Xu T (2008) Adaptive mean shift-based image segmentation using multiple instance learning. In: Proceedings of IEEE international conference on digital information management, pp 716–721

  13. Gu IYH, Gui V (2001) Colour image segmentation using adaptive mean shift filters. In: Proceedings of IEEE international conference on image processing, vol 1, pp 726–729

  14. Guy G, Medioni G (1996) Inferring global perceptual contours from local features. Int J Comput Vis 20(1–2):113–133

    Article  Google Scholar 

  15. Li J, Wang J, Wiederhold G (2000) IRM: integrated region matching for image retrieval. In: Proceedings of ACM conference on multimedia, pp 147–156

  16. Maron O, Lozano-Pérez T (1998) A framework for multiple-instance learning. In: Jordan MI, Kearns MJ, Solla SA (eds) Advances in neural information processing systems, vol 10. MIT, Cambridge

    Google Scholar 

  17. McQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297

  18. Pal NR, Pal SK (1993) A review of image segmentation techniques. Pattern Recogn 26(9):1277–1294

    Article  Google Scholar 

  19. Pearl, J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco

    Google Scholar 

  20. Peng J, Bhanu B (1998) Closed-loop object recognition using reinforcement learning. IEEE Trans Pattern Anal Mach Intell 20(2):139–154

    Article  Google Scholar 

  21. Schnitman Y, Caspi Y, Cohen-Or D, Lischinski D (2006) Inducing semantic segmentations from an example. In: Asian conference on computer vision, pp 384–393

  22. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  23. Smeulders AW, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Article  Google Scholar 

  24. Tu Z, Zhu S.C (2002) Image segmentation by data-driven Markov chain and Monte Carlo. IEEE Trans Pattern Anal Mach Intell 24(5):657–673

    Article  Google Scholar 

  25. Wang Y, Yang J, Peng N (2006) Unsupervised color-texture segmentation based on soft criterion with adaptive mean-shift clustering. Pattern Recogn Lett 27:386–392

    Article  Google Scholar 

  26. Xu T, Gondra I (2009) Texture map: an effective representation for image segmentation. In: Proceedings of the C3S2E conference. ACM, New York, pp 197–203

    Chapter  Google Scholar 

  27. Zhou XS, Huang TS (2003) Relevance feedback in image retrieval: A comprehensive review. Multimedia Syst 8(6):536–544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iker Gondra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gondra, I., Xu, T. A multiple instance learning based framework for semantic image segmentation. Multimed Tools Appl 48, 339–365 (2010). https://doi.org/10.1007/s11042-009-0347-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0347-z

Keywords

Navigation