Skip to main content
Log in

Specific Features of Electroplastic Effect in Mono- and Polycrystalline Aluminum

  • Published:
Metal Science and Heat Treatment Aims and scope

The deformation behavior of mono- and polycrystalline aluminum under tension with the impact of different modes of current has been studied. It is shown that the deformation behavior of a monocrystal under the impact of single current pulses is characterized by hardening, and that of a polycrystal is characterized by softening, with an increase in the relative elongation to fracture in both materials. The deformation mechanism depends on the current regime and microstructure. The relative contribution of the electroplastic effect to the decrease in flow stresses is higher than that of the thermal effect of the current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. O. A. Troitskii, “Electromechanical effect in metals,” JETP Lett., No. 1, 18 – 22 (1969).

  2. J. B. Ruszkiewicz, L. Mears, and J. T. Roth, “Investigation of heterogeneous joule heating as the explanation for the transient electroplastic stress drop in pulsed tension of 7075-T6 aluminum,” J. Manuf. Sci. Eng., Trans. ASME, 140(9), 1 – 11 (2018).

    Article  Google Scholar 

  3. A. Ghiotti, S. Bruschi, E. Simonetto, et al., “Electroplastic effect on AA1050 aluminum alloy formability,” CIRP Ann. – Manuf. Techn., 67(1), 289 – 292 (2018).

    Article  Google Scholar 

  4. V. V. Stolyarov, “Evolution of physical and mechanical properties of nanostructured titanium upon annealing,” J. Mach. Manuf. Reliab., 48(6), 563 – 568 (2019).

    Article  Google Scholar 

  5. D. Andre, T. Burlet, F. Korkemeyer, et al., “Investigation of the electroplastic effect using nanoindentation,” Mater. Design, 183, 1 – 10 (2019).

    Google Scholar 

  6. N. V. Mel’nikova and Yu. A. Khon, “On the theory of electroplastic deformation of metals,” Fiz. Mezomekh., No. 3, 59 – 64 (2000).

  7. C. Ross and J. T. Roth, “The effects of DC current on the tensile properties of metals,” in: Proc. IMECE, United States of Amer.: Mechan. Eng., 100, 363 – 372 (2008).

  8. X. Wang, A. J. Sanchez Egea, J. Xu, et al., “Current-induced ductility enhancement of a magnesium alloy AZ31 in uniaxial micro-tension below 373 K,” Materials, 12(1), 1 – 12 (2018).

    Article  Google Scholar 

  9. H. Krishnaswamy, M. J. Kim, S. T. Hong, et al., “Electroplastic behavior in an aluminum alloy and dislocation density based modeling,” Mater. Design, 124, 131 – 142 (2017).

    Article  CAS  Google Scholar 

  10. H. W. Li, S. L. Yan, M. Zhan, and X. Zhang, “Eddy current induced dynamic deformation behaviors of aluminum alloy during EMF: Modeling and quantitative characterization,” J. Mater. Process. Tech., 263, 423 – 439 (2019).

    Article  CAS  Google Scholar 

  11. J. Y. Liu and K. F. Zhang, “Influence of electric current on superplastic deformation mechanism of 5083 aluminum alloy,” Mater. Sci. Tech., 32(6), 540 – 546 (2016).

    Article  CAS  Google Scholar 

  12. I. G. Shirinkina, I. G. Brodova, V. V. Astaf’ev, et al., “Structure and phase transformation in Aluminum-Copper alloys under the effect of electroplastic deformation,” Phys. Met. Metallogr., 115(12), 1221 – 1230 (2014).

    Article  Google Scholar 

  13. O. A. Troitskii, Yu. V. Baranov, Yu. S. Avraamov, and A. D. Shlyapin, Physical Foundations and Processing Technologies of Advanced Materials (Theory, Technology, Structure and Properties) [in Russian], Izd-vo RKhD ANO IKI, Izhevsk (2004).

  14. Z. Zhao, G. Wang, H. Hou, et al., “Influence of high-energy pulse current on the mechanical properties and microstructures of Ti – 6Al – 4V alloy,” J. Mater. Eng. Perform., 26(10), 5146 – 5153 (2017).

    Article  CAS  Google Scholar 

  15. H. Conrad, “Electroplasticity in metals and ceramics,” Mater. Sci. Eng. A, 287, No. 2, 276 – 287 (2000).

    Article  Google Scholar 

  16. H. G. Park, B. S. Kang, and J. Kim, “Numerical modeling and experimental verification for high-speed forming of Al5052 with single current pulse,” Metals, 9(12), 1 – 16 (2019).

    Article  Google Scholar 

  17. J. H. Roh, J. J. Seo, S. T. Hong, et al., “The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current,” Int. J. Plasticity, 58, 84 – 99 (2014).

    Article  CAS  Google Scholar 

  18. Q. Luan, H. Xing, J. Zhang, and J. Jiang, “Experimental and crystal plasticity study on deformation bands in single crystal and multi-crystal pure aluminum,” Acta Mater., 183, 78 – 92 (2020).

    Article  CAS  Google Scholar 

  19. H. Krishnaswamy, M. J. Kim, S. T. Hong, et al., “Electroplastic behavior in an aluminum alloy and dislocation density based modeling,” Mater. Design, 124, 131 – 142 (2017).

    Article  CAS  Google Scholar 

  20. I. Choi, S. Jin, and S. Kang, “Effects of microstructure and alloy contents on the Lüders line formation in Al – Mg alloys,” Scr. Mater., 38(6), 887 – 892 (1998).

    Article  CAS  Google Scholar 

  21. B. Reyne, P. Y. Manach, and N. Moes, “Macroscopic consequences of Piobert – Lüders and Portevin – Le Chatelier bands during tensile deformation in Al – Mg alloys,” Mater. Sci. Eng. A, 746, 187 – 196 (2019).

    Article  CAS  Google Scholar 

  22. A. A. Shibkov, M. A. Zheltov, M. F. Gasanov, and A. E. Zolotov, “Dynamics of the Lüders band and destruction of an aluminum-magnesium alloy initiated by a stress concentrator,” Fiz. Tverd. Tela, 60(2), 315 – 322 (2018).

    Google Scholar 

  23. M. Furukawa, Y. Iwahashi, Z. Horita, et al., “Structural evolution and the Hall–Petch relationship in an Al – Mg – Li – Zr alloy with ultra-fine grain size,” Acta Mater., 45(11), 4751 – 4757 (1997).

    Article  CAS  Google Scholar 

  24. S. V. Konovalov, D. V. Zagulyaev, Yu. F. Ivanov, and V. E. Gromov, “Effect of magnetic field on the fracture surface of aluminum under creep,” Vestn. NNGU, No. 2, 33 – 37 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pakhomov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 8 – 14, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Stolyarov, V.V. Specific Features of Electroplastic Effect in Mono- and Polycrystalline Aluminum. Met Sci Heat Treat 63, 236–242 (2021). https://doi.org/10.1007/s11041-021-00677-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00677-7

Key words

Navigation