Skip to main content
Log in

Structure and Phase Composition of Biomedical Alloys of the Ti – Nb System in Cast Condition and After Heat Treatment

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of additions of niobium in an amount of from 20 to 35 wt.% on the structure and properties of two-component Ti – Nb alloys is studied in cast condition and after a homogenizing annealing. The structure of the alloys is determined by optical and scanning electron microscopy, x-ray spectrum analysis and diffraction of synchrotron radiation. The lattice parameters of the formed phases and the mechanical properties of the alloys are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. M. Niinomi, “Recent metallic materials for biomedical applications,” Metall. Mater. Trans. A, 33(3), 477 – 486 (2002), doi: https://doi.org/10.1007/s11661-002-0109-2.

    Article  Google Scholar 

  2. M. B. Nasab, M. R. Hassan, and B. B. Sahari, “Metallic biomaterials of knee and Hip – A review,” Trends Biomater. Artif. Org., 24(1), 69 – 82 (2010).

    Google Scholar 

  3. M. Niinomi, “Metallic biomaterials,” J. Artif. Org., 11(3), 105 – 110 (2008), doi: https://doi.org/10.1007/s10047-008-0422-7.

    Article  Google Scholar 

  4. M. Sumita, T. Hanawa, and S. H. Teoh, “Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials – review,” Mater. Sci. Eng. C, 24(6 – 8), 753 – 760 (2004), doi: https://doi.org/10.1016/j.msec.2004.08.030.

  5. M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review,” Progr. Mater. Sci., 54(3), 397 – 425 (2009), doi: https://doi.org/10.1016/j.pmatsci.2008.06.004.

    Article  Google Scholar 

  6. M. Niinomi and M. Nakai, “Titanium-based biomaterials for preventing stress shielding between implant devices and bone,” Int. J. Biomater., 2011, 836587 (2011), doi: https://doi.org/10.1155/2011/836587.

  7. C. N. Elias, J. H. C. Lima, R. Valiev, and M. A. Meyers, “Biomedical applications of titanium and its alloys,” JOM, 60(3), 46 – 49 (2008), doi: https://doi.org/10.1007/s11837-008-0031-1.

    Article  Google Scholar 

  8. M. Abdel-Hady, “Texturing tendency in β-type Ti-alloys” in: P. Wilson (ed.), Recent Developments in the Study of Recrystallization (2012), p. 232.

    Google Scholar 

  9. M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng. A, 243(1 – 2), 231 – 236 (1998), doi: https://doi.org/10.1016/S0921-5093(97)00806-X.

  10. M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behavior Biomed. Mater., 1(1), 30 – 42 (2008), doi: https://doi.org/10.1016/j.jmbbm.2007.07.001.

    Article  Google Scholar 

  11. Z. G. Kovalevskaya, Y. P. Sharkeev, M. A. Korchagin, et al., “Investigation of the structure of Ti – 40Nb powder alloy obtained by mechanical activation,” Metal Working Mater. Sci., 73(4), 34 – 42 (2016), doi: https://doi.org/10.17212/1994-6309-2016-4-34-42.

    Article  Google Scholar 

  12. A. Thoemmes, I. A. Bataev, N. S. Belousova, and D. V. Lazurenko, “Microstructure and mechanical properties of binary Ti – Nb alloys for application in medicine,” in: 11th Int. Forum on Strategic Technology (IFOST), June 1 – 3, 2016, Novosibirsk, Russia (2016), pp. 26 – 29, doi: 10.1109/IFOST.2016.7884101.

  13. D. P. Perl, “Relationship of aluminum to Alzheimer’s disease,” Envir. Health Persp., 63, 149 – 153 (1985), doi: https://doi.org/10.1289/ehp.8563149.

    Article  Google Scholar 

  14. A. Cremasco, A. D. Messias, A. R. Esposito, et al., “Effects of alloying elements on the cytotoxic response of titanium alloys,” Mater. Sci. Eng. A, 31(5), 833 – 839 (2011), doi: https://doi.org/10.1016/j.msec.2010.12.013.

    Article  Google Scholar 

  15. J. L. Murray, “The Nb – Ti (niobium-tantalum) system,” Bull. Alloy Phase Diagr., 2(1), 55 – 61 (1981), doi: https://doi.org/10.1007/BF02873704.

    Article  Google Scholar 

  16. D. L. Moffat, Phase Transformations in the Titanium-Niobium Binary Alloy System, Author’s Abstract of Doctoral’s Thesis, Univ. of Wisconsin, Madison (USA) (1985), 238 p.

  17. M. Bönisch, Structural Properties, Deformation Behavior and Thermal Stability of Martensitic Ti – Nb Alloys, Author’s Abstract of Doctoral’s Thesis, Werner Skrotzki Technische Univers., Dresden (2014), 160 p.

  18. H. Y. Kim, Y. Ikehara, J. I. Kim, et al., “Martensitic transformations, shape memory effect and superplasticity of Ti – Nb binary alloys,” Acta Mater., 54(9), 2419 – 2429 (2006), doi: https://doi.org/10.1016/j.actamat.2006.01.019.

    Article  Google Scholar 

  19. D. L. Moffat and U. R. Kattner, “The stable and metastable Ti – Ni phase diagrams,” Metall. Trans. A, 19(10), 2389 – 2397 (1988), doi: https://doi.org/10.1007/BF02645466.

    Article  Google Scholar 

  20. Y. Zhang, H. Liu, and Z. Jin, “Thermodynamic assessment of the Nb – Ti system,” Calphad, 25(2), 305 – 317 (2001), doi: https://doi.org/10.1016/S0364-5916(01)00051-7.

    Article  Google Scholar 

  21. A. V. Dobromyslov and V. A. Elkin, “The orthorhombic α″-phase in binary titanium-base alloys with d-metals of V – VIII groups,” Mater. Sci. Eng. A, 438 – 440, 324 – 326 (2006), doi: 10.1016/j.msea.2006.02.086.

  22. M. Bönisch, M. Calin, L. Giebeler, et al., “Composition-dependent magnitude of atomic shuffles in Ti – Nb martensites,” J. Appl. Crystallogr., 47(4), 1374 – 1379 (2014), doi: https://doi.org/10.1107/S1600576714012576.

    Article  Google Scholar 

  23. Y. Mantani and K. Kudou, “Effect of plastic deformation on material properties and martensite structures in Ti – Nb alloys,” J. Alloys Compd., 577, S448 – S452 (2013), doi: https://doi.org/10.1016/j.jallcom.2012.04.054.

    Article  Google Scholar 

  24. Yu. A. Bagariatskii, G. I. Nosova, and T. V. Tagunova, “Factors in the formation of metastable phases in titanium-base alloys,” Soviet Physics: Doklady, English Translation, Issue 3, 1014 – 1018 (1958).

  25. K. S. Jepson, A. R. G. Brown, and J. A. Gray, “The effect of cooling rate on the beta transformation in titanium-niobium and titanium-aluminum alloys,” in: The Science, Technology, and Application of Titanium, Proc. Int. Conf. (1970), pp. 677 – 690, doi: 10.1016_B978-0-08-006564-9.50074-9.

  26. J. P. Morniroli and M. Gantois, “Investigation of the conditions for omega phase formation in Ti – Nb and Ti – Mo alloys,” Mémoires et Études Scientifiques de la Revue de Métallurgie, 70, 831 – 842 (1973).

    Google Scholar 

  27. M. Bonisch, A. Panigrahi, M. Stoica, et al., “Giant thermal expansion and α-precipitation pathways in Ti-alloys,” Nature Commun., 8(1), 1429 (2017), doi: https://doi.org/10.1038/s41467-017-01578-1.

    Article  Google Scholar 

  28. A. V. Dobromyslov and V. A. Elkin, “Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4 – 6 periods,” Scr. Mater., 44(6), 905 – 910 (2001), doi: https://doi.org/10.1016/S1359-6462(00)00694-1.

    Article  Google Scholar 

  29. N. V. D’yakonova, I. V. Lyasotskii and Y. L. Rodionov, “Orthorhombic martensite and the ω phase in quenched and deformed titanium alloys with 20 – 24 at.% Nb,” Russian Metallurgy (Metally), 2007(1), 51 – 58 (2007), doi: https://doi.org/10.1134/S0036029507010107.

  30. E. Rudy, Compilation of Phase Diagram Data (1969).

    Google Scholar 

  31. S. Cai, J. E. Schaffer, and Y. Ren, “Deformation of a Ti – Nb alloy containing α″-martensite and omega phases,” Appl. Phys. Lett., 106(13), 131907 (2015), Iss. 13. P. 131907, doi: https://doi.org/10.1063/1.4916960.

  32. J. Sun, Q. Yao, H. Xing, andW. Y. Gio, “Elastic properties of β, α″, and ω metastable phases in Ti – Nb alloy from first-principles,” J. Phys., Condensed Matter, 19(48), 486215 (2007), doi: https://doi.org/10.1088/0953-8984/19/48/486215.

    Article  Google Scholar 

  33. L. Ming, M. H. Manghnani, and K. W. Katahara, “Phase transformations in the Ti – V system under high pressure up to 25 GPa,” Acta Metall., 29(3), 479 – 485 (1981), doi: https://doi.org/10.1016/0001-6160(81)90071-7.

    Article  Google Scholar 

  34. Y.W. Chai, H. Y. Kim, H. Hosoda, and S. Miyazaki, “Interfacial defects in Ti – Nb shape memory alloys,” Acta Mater., 56(13), 3088 – 3097 (2008), doi: https://doi.org/10.1016/j.actamat.2008.02.045.

    Article  Google Scholar 

Download references

The work has been performed with financial support of the Novosibirsk State Technical University (Project No. S-3.2018) using the equipment of Collective Use Center (TsKP SSM) of the Novosibirsk State Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Thoemmes.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 44 – 51, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thoemmes, A., Ivanov, I.V., Ruktuev, A.A. et al. Structure and Phase Composition of Biomedical Alloys of the Ti – Nb System in Cast Condition and After Heat Treatment. Met Sci Heat Treat 60, 659–665 (2019). https://doi.org/10.1007/s11041-019-00334-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00334-0

Key words

Navigation