Skip to main content
Log in

Primary Recrystallization Texture in FCC-Metal with Low Packing Defect Energy

  • Published:
Metal Science and Heat Treatment Aims and scope

The method of orientation microscopy (EBSD) is used to study the special features of recrystallization texture in drawn copper wire. It is shown that the strict crystallographic relationships between deformation and recrystallization orientations are consequences of the dominant role in structural transformations of special misorientations, i.e. special boundaries. Mechanisms of the appearance and “growth” of annealing twins are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Yu. N. Loginov and V. V. Kotov, “Texture development in copper semiproducts,” in: Features of Treatment and Use of Heavy Nonferrous Metal Objects [in Russian], UrO RAN, Ekaterinburg (2006).

  2. A. S. Belyaevskikh, M. L. Lobanov, G. M. Rusakov, and A. A. Redikul’tsev, “Improving the production of superthin anisotropic electrical steel,” Steel Transl., 45(12), 982 – 986 (2015).

    Article  Google Scholar 

  3. I. Yu. Pyshmintsev, A. O. Struin, A. M. Gervasyev, et al., “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, 1 – 8 (2016).

  4. G. Gottstein, Physical Foundation of Materials Science, Springer-Verlag, Berlin Heidelberg (2004).

    Book  Google Scholar 

  5. Ya. D. Vusnyakov, A. A. Babareko, S. A. Vladimirov, and I. V. Égiz, Theory of Texture Formation in Metals and Alloys [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  6. S. L. Demakov, Y. N. Loginov, A. G. Illarionov, et al., “Effect of annealing temperature on the texture of copper wire,” Phys. Met. Metallogr., 113(7), 681 – 686 (2012).

    Article  Google Scholar 

  7. A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena: Second Edition, Elsevier Ltd (2004).

  8. M. Hölscher, D. Raabe, and K. Lücke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater., 42(3), 879 – 886 (1994).

    Article  Google Scholar 

  9. A. G. Uritskii, A. A. Redikul’tsev, S. V. Smirnov, et al. “Structure and texture formation over the width of ferritic-steel strip in hot rolling,” Steel Transl., 44(10), 723 – 725 (2015).

    Article  Google Scholar 

  10. M. L. Lobanov, S. V. Danilov, V. I. Pastukhov, et al., “The crystallographic relationship of molybdenum textures after hot rolling and recrystallization,” Mater. Des., 109, 251 – 255 (2016).

    Article  CAS  Google Scholar 

  11. G. Wassermann and J. Grewen, Texturen Metallischer Werkstoffe, Springer, Berlin (1962).

    Book  Google Scholar 

  12. T. Maitland and S. Sitzman, Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples, Springer, Berlin (2007).

    Google Scholar 

  13. M. L. Lobanov, A. A. Redikul’tsev, G. M. Rusakov, and S. V. Danilov, “Interrelation between the orientations of deformation and recrystallization in hot rolling of anisotropic electrical steel,” Met. Sci. Heat Treat., 57(7 – 8), 492 – 497 (2015).

    Article  CAS  Google Scholar 

  14. A. A. Redikul’tsev, L. M. Lobanov, G. M. Rusakov, and L. V. Lobanova, “Secondary recrystallization in Fe – 3 % Si alloy with (110)[001] single-component texture,” Phys. Met. Metallogr., 114(1), 33 – 40 (2013).

    Article  Google Scholar 

  15. P. Haasen, “How are new orientations generated during primary recrystallization?” Metall. Trans. A., 24(5), 1001 – 1015 (1993).

    Article  Google Scholar 

  16. Y. V. Khlebnikova, D. P. Rodionov, I. V. Gervas’eva, et al., “Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates,” Tech. Phys., 60(3), 389 – 399 (2015).

    Article  CAS  Google Scholar 

  17. T. Baudin, A. L. Etter, and R. Penelle, “Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements,” Mater. Charact., 58(10), 947 – 953 (2007).

    Article  CAS  Google Scholar 

  18. F. Brisset, A.-L. Helbert, and T. Baudin, “In situ electron backscatter diffraction investigation of recrystallization in a copper wire,” Microsc. Microanal., 19(4), 969 – 977 (2013).

    Article  CAS  Google Scholar 

  19. J.-H. Cho, A. D. Rollet, J.-S. Cho, et al., “Investigation of recrystallization and grain growth of copper and gold bonding wires,” Metall. Mater. Trans. A, 37(10), 3085 – 3097 (2006).

    Article  Google Scholar 

  20. H. Park and D. N. Lee, “The evolution of annealing textures in 90 Pct drawn copper wire,” Metall. Mater. Trans. Phys. Metall. Mater. Sci., 34A(3), 531 – 541 (2003).

    Article  CAS  Google Scholar 

  21. K. R. Narayanan, I. Sridhar, and S. Subbiah, “Experimental and numerical investigations of the texture evolution in copper wire drawing,” Appl. Phys. Mater. Sci. Proc., 107(2), 485 – 495 (2012).

    Article  CAS  Google Scholar 

  22. K. Rajan and R. Petkie, “Microtexture and anisotropy in wire drawn copper,” Mater. Sci. Eng. A, 257, 197 (1998).

    Article  Google Scholar 

  23. T. Montesin and J. J. Heizmann, “Evolution of crystallographic texture in thin wires,” J. Appl. Crystallogr., 25(6), 665 – 673 (1992).

    Article  Google Scholar 

  24. D. N. Lee, “Strain energy release maximization model for recrystallization textures,” Met. Mater. Int., 5(5), 401 – 417 (1999).

    Article  CAS  Google Scholar 

  25. S. I. Wright, J. F. Bingert, and L. Zernow, “Microtextural zones in a copper shaped charge particle,” Mater. Sci. Eng. A, 207(2), 224 – 227 (1996).

    Article  Google Scholar 

  26. R. Penelle and T. Baudin, “Primary recrystallization of invar, Fe – 36% Ni alloy: Origin and development of the cubic texture,” Adv. Eng. Mater., 12(10), 1047 – 1052 (2010).

    Article  CAS  Google Scholar 

  27. V. Randle, “Twinning-related grain boundary engineering,” Acta Mater., 52, 4067 – 4081 (2004).

    Article  CAS  Google Scholar 

  28. D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater., 55(12), 4233 – 4241 (2007).

    Article  CAS  Google Scholar 

  29. N. Souaï, N. Bozzolo, L. Nazé, et al., “About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy,” Scr. Mater., 62(11), 851 – 854 (2010).

    Article  Google Scholar 

  30. J. G. Brons and G. B. Thompson, “A comparison of grain boundary evolution during grain growth in fcc metals,” Acta Mater., 61(11), 3936 – 3944 (2013).

    Article  CAS  Google Scholar 

  31. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Metal Properties [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

Download references

The authors are grateful for cooperation of the support program of leading RF universities with the aim of increasing their competitiveness No. 211 of the RF government No. 02.A03,21.0006. Work performed within the scope of a RFFI grant (No. 16-32-00030mol a), also an RF President grant No. MK-1032.2017.8, and also within the scope of a state assignment FANO Rossii, theme “Structure” registration number 01201463331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lobanov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 55 – 61, May, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorina, M.A., Lobanov, M.L., Makarova, E.A. et al. Primary Recrystallization Texture in FCC-Metal with Low Packing Defect Energy. Met Sci Heat Treat 60, 329–336 (2018). https://doi.org/10.1007/s11041-018-0280-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0280-8

Key words

Navigation