Skip to main content
Log in

Isothermal Decomposition of β-Solid Solution in Titanium Alloy Ti – 10 V – 2Fe – 3Al

  • Published:
Metal Science and Heat Treatment Aims and scope

Regular features of variation of structure, phase composition and hardness characteristics in a β-phase-based titanium alloy Ti – 10 V – 2Fe – 3Al subjected to isothermal treatment in a melt of lead and tin for 5 sec – 32 h at 250 – 800 °C after a hold at 860 °C are considered. The types of the phases precipitated in the process of isothermal decomposition of the high-temperature β-solid solution and the dependences of the lattice constant of the β-phase and of the hardness on the temperature-and-time mode of the treatment are determined. Adiagram of isothermal decomposition of the β-solid solution in alloy Ti – 10 V – 2Fe – 3Al is plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. A. Popov, Phase Transformations in Metallic Materials [in Russian], Metallurgiya, Moscow (1963), 311 p.

  2. A. A. Popov and L. E. Popova, Isothermal and Thermokinetic Diagrams of Decomposition of Supercooled Austenite: Heat Treater Directory [in Russian], Mashgiz, Moscow (1961), 430 p.

  3. A. A. Popov and L. E. Popova, Isothermal and Thermokinetic Diagrams of Decomposition of Supercooled Austenite: Heat Treater Directory [in Russian], Metallurgiya, Moscow (1965), 495 p.

  4. A. A. Popov and L. E. Popova, Diagrams of Transformation of Austenite in Steels and of Beta-Solution in Titanium Alloys, Heat Treater Directory [in Russian], Metallurgiya, Moscow (1991), 503 p.

  5. J. D. Cotton, R. D. Briggs, R. R. Boyer, et al., “State of the art in beta titanium alloys for airframe application,” JOM, 67(6), 1281 – 1303 (2015) (DOI: 10.1007/s11837-015-1442-4).

  6. J. R. Toran and R. R. Biederman, “Phase transformation study of Ti – 10V – 2Fe – 3Al,” in: Titanium’80 Science and Technology, TMS/AIME (1980), Vol. 1, pp. 1491 – 1500.

  7. T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformations and tensile properties of Ti – 10V – 2Fe – 3Al,” Metall. Trans. A, 11A, 1980 – 1987 (1980).

  8. S. Bien and J. Bechet, “Phase transformation kinetics and mechanisms in titanium alloys Ti-6-2-4-6, β-CEZ and Ti-10-2-3,” J. de Phys. IV, JP, 6(1), C1-99 – C1-108 (1996).

  9. A. G. Illarionov, A. A. Popov, M. Yu. Kollerov, and A. V. Korelin, “Effect of aging on the structure and properties of cold-deformed alloys VT22I and Ti-10-2-3 alloyed with hydrogen,” Fiz. Met. Metalloved., 89(6), 37 – 42 (2000).

  10. A. G. Illarionov, A. A. Popov, and A. V. Korelin, “Formation of structure and properties of titanium alloys of transition class after warm rolling,” Metalloved. Term. Obrab. Met., No. 9, 16 – 19 (2000).

  11. A. G. Illarionov, S. L. Demakov, A. A. Popov, et al., “Structural and phase transformations in Ti-10-2-3 (α + β) titanium alloy of transition class under hardening heat treatment,” Titan, No. 3, 27 – 33 (2009).

  12. P. Barriobero-Vita, G. Requena, F. Warchomicka, et al., “Phase transformation kinetics during continuous heating of a β-quenched Ti – 10V – 2Fe – 3Al alloy,” J. Mater. Sci., 50, 1412 – 1426 (2015) (DOI: 10.1007/s10853-014-8701-6).

  13. A. Illarionov, I. Narygina, and A. Popov, “The effect of cold deformation on structure and deformation induced phase transformations in quenched (α + β)-alloys of transition class,” in: Ti 2011: Proc. 12th World Conf. on Titanium (2012), pp. 709 – 713.

  14. Boyer Rodney,Welsh Gerhard, and E.W. Collings (eds.), Materials Properties Handbook: Titanium Alloys, Metals Park, Ohio, ASM Int. (1994), 1176 p.

  15. A. G. Illarionov, S. V. Grib, A. A. Popov, and O. A. Elkina, “Special features of formation of omega-phase in titanium alloys under quenching,” Metalloved. Term. Obrab. Met., No. 10, 39 – 44 (2010).

  16. V. S. Lyasotskaya, Heat Treatment of Welded Joints of Titanium Alloys [in Russian], Ekomet, Moscow (2003), 352 p.

  17. W. Zwicker, Titanium and its Alloys [Russian translation], Mir, Moscow (1979), 512 p.

  18. S. Nag, R. Banerjee, R. Srinivasan, et al., “β-Assisted nucleation and growth of precipitates in the Ti – 5Al – 5Mo – 5V –3Cr – 0.5Feβ titanium alloy,” Acta Mater., 57 (2009).

  19. I. I. Novikov, The Theory of Heat Treatment [in Russian], Metallurgiya, Moscow (1986), 480 p.

  20. F. V. Volodarskii, A. G. Illarionov, A. A. Popov, et al., “A study of processes of isothermal decomposition of β-solid solution in titanium alloy VST2,” Metalloved. Term. Obrab. Met., No. 8, 11 – 16 (2015).

  21. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys: Composition, Structure, Properties [in Russian], VILS – MATI (2009), 520 p.

Download references

The work has been supported by a state assignment of the Ministry of Education and Science of the Russian Federation No. 2014/236 (Project 2329) and by the program for support of leading universities of the RF aimed at raising their competitiveness No. 211 of the Government of the Russian Federation No. 02.A03.21.006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Illarionov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 36 – 41, November, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illarionov, A.G., Trubochkin, A.V., Shalaev, A.M. et al. Isothermal Decomposition of β-Solid Solution in Titanium Alloy Ti – 10 V – 2Fe – 3Al. Met Sci Heat Treat 58, 674–680 (2017). https://doi.org/10.1007/s11041-017-0077-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0077-1

Key words

Navigation