Skip to main content
Log in

Crystal Geometry Mechanism of Intergrowth of Spinel and Manganese Sulfide into a Complex Nonmetallic Inclusion

  • Published:
Metal Science and Heat Treatment Aims and scope

An Erratum to this article was published on 23 January 2017

Acrystal geometry mechanism of intergrowth of crystals of MgAl2O4 spinel and MnS manganese sulfide into a single complex inclusion with anion fcc skeleton is suggested. The deformation of the edges of the polyhedrons during the intergrowth is limited to 10%. The structure of the intermediate layer is shown to be represented by a face union of triangulated polyhedrons the vertexes of which are occupied with oxygen and sulfur ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. G. Rodionova, A. I. Zaitsev, N. G. Shaposhnikov, et al., “Effect of chemical composition and production parameters on formation of nanostructure component and combination of properties of high-strength low-alloy structural steels,” Metallurg, No. 6, 33 – 39 (2010).

  2. I. G. Rodionova, I. N. Chirkina, E. M. Efimova, et al., “Metal science aspects of elevation of the set of properties of coldrolled automotive rolled sheets from microalloyed steels,” Probl. Chern. Metallurg. Metalloved., No. 1, 85 – 92 (2001).

  3. V. S. Kraposhin and A. L. Talis, “Crystallography and substance,” Priroda, No. 11, 3 – 15 (2014).

  4. V. S. Kraposhin and A. L. Talis, “Combinatorics and strength of steel,” Priroda, No. 12, 3 – 12 (2014).

  5. A. I. Zaitsev, I. G. Rodionova, N. G. Shaposhnikov, et al., “New types of unfavorable nonmetallic inclusions based on MgO – Al2O3 and metallurgical factors determining their content in metal. Part II. Mechanisms of transformation of nonmetallic inclusions based on aluminum spinel. Main approaches to lowering the content of such inclusions in steel,” Metallurg, No. 3, 28 – 33 (2011).

  6. Ya. S. Umanskii, B. N. Finkel’shtein, M. E. Blanter, et al., Physical Metallurgy [in Russian], Metallurgizdat, Moscow (1955), 724 p.

  7. V. G. Kurdyumov. L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977), 236 p.

  8. N. P. Dolbilin, “About local properties of discrete regular systems,” Dokl. Akad. Nauk SSSR, 230, 516 – 519 (1976).

    Google Scholar 

  9. R. V. Galiulin, “Systems of B. N. Delone as a basis for the geometry of discrete world,” Zh. Vychisl. Matemat. Mat. Fiz., 43(6), 791 – 802 (2003).

    Google Scholar 

  10. A. L. Talis, “Symmetry laws of construction of ordered tetracoordinated structures,” in: Carbon Research: Successes and Problems [in Russian], Nauka, Moscow (2007), pp. 189 – 205.

  11. N. V. Belov, Structure of Ion Crystals and Metallic Phases [in Russian], Izd. AN SSSR, Moscow (1947), 238 p.

  12. V. S. Kraposhin, A. L. Talis, and M. I. Samoylovitch, “Axial (helical) substructures determined by the root lattice E8 as generating clusters of the condensed phases,” J. Non-Cryst. Solids, 353, 3279 – 3284 (2007).

    Article  Google Scholar 

  13. A. I. Zaitsev, B. M. Mogutnov, and E. Kh. Shakhpazov, The Physical Chemistry of Metallurgical Slags [in Russian], Intercontact Nauka, Moscow (2008).

    Google Scholar 

  14. Ya. I. Frenkel, An Introduction into the Theory of Metals [in Russian], Nauka, Leningrad (1972), 424 p.

  15. T. D. Shen, U. Harms, and R. B. Schwarz, “Correlation between the volume change during crystallization and the thermal stability of supercooled liquids,” Appl. Phys. Lett., 83, 4512 (2003), http://dx.doi.org/10.1063/1.1631056.

  16. Yu. A. Skakov and V. S. Kraposhin, “Solidification under the conditions of super rapid cooling. Phase transformations due to heating of metallic glasses,” Itogi Nauki Tekh., Metalloved. Term. Obrab., 13, 3 – 78 (1976).

    Google Scholar 

  17. J. D. Bernal, “The structure of liquids,” Proc. Roy. Soc., A280, 299 – 322 (1964).

    Article  Google Scholar 

  18. A. Talis and V. Kraposhin, “Finite noncrystallographic groups. 11-vertex equi-edged triangulated clusters and polymorphic transformations in metals,” Acta Cryst., A70, 616 – 625 (2014).

    Google Scholar 

  19. V. M. Kosevich, V. M. Ievlev, L. S. Palatnik, and A. I. Fedorenko, Structure of Intercrystallite and Interphase Boundaries [in Russian], Metallurgiya, Moscow (1980), 256 p.

  20. M. I. Samoilovich and L. P. Talis, “Gosset helicoids. I. 8-dimensional crystallographic lattice E8 and crystallographic, quasicrystallographic, and noninteger helical axes of the helicoids,” Krystallografiya, No. 2, 599 – 606 (2007).

  21. V. S. Kraposhin, M. N. Pankova, A. L. Talis, and Yu. A. Freiman, “An application of a polytope (4D-polyhedron) concept for the description of polymorphic transformations: iron martensite and solid oxygen,” J. Phys. IV France, 112, 119 – 122 (2003).

    Article  Google Scholar 

  22. K. Olsen and J. Bohr, “The generic geometry of helices and their close-packed structures,” Theor. Chem. Acc., 125, 207 – 215 (2010).

    Article  Google Scholar 

  23. B. F. Ormont, Structures of Inorganic Substances [in Russian], Gostekhizdat, Moscow – Leningrad (1950), 968 p.

  24. T. Paine, T. Weyhermüller, E. Bothe, et al., “Manganese complexes of mixed O,X,O-donor ligands (X = S or Se): synthesis, characterization and catalytic reactivity,” Dalton Trans., 3136 – 3144 (2003).

  25. U. Heinl, U. Kleinitz, R. Mattes, and Z. Anorg, Allg. Chem., 628, 2409 (2002).

    Article  Google Scholar 

  26. H. Nyman, C. E. Carroll, and B. G. Hyde, “Rectilinear rods of free-sharing tetrahedra and the structure of β-Mn,” Zeitschrift für Kristallographie, 196, 39 – 46 (1991).

    Article  Google Scholar 

  27. K. Schubert, Crystallographic Structures of Two-Component Phases [Russian translation], Metallurgiya, Moscow (1964), 468 p.

  28. B. G. Livshits, V. S. Kraposhin, and Ya. L. Linetskii, Physical Properties of Metals and Alloys [in Russian], Metallurgiya, Moscow (1980), 320 p.

Download references

The study has been performed within a grant of the Russian Scientific Foundation (Project No. 14-19-01726) at the Bardin Central Research Institute of Ferrous Metallurgy (FGUP “TsNIIchermet”).

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 4 – 12, July, 2015.

An erratum to this article is available at http://dx.doi.org/10.1007/s11041-017-0071-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuraposhin, V.S., Talis, A.L., Demina, E.D. et al. Crystal Geometry Mechanism of Intergrowth of Spinel and Manganese Sulfide into a Complex Nonmetallic Inclusion. Met Sci Heat Treat 57, 371–378 (2015). https://doi.org/10.1007/s11041-015-9892-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-015-9892-4

Key words

Navigation