Skip to main content
Log in

Diagnosis of the Fracture and Fracture Energy of High-Ductility Steels in Instrumented Impact-Bending Tests

  • Published:
Metal Science and Heat Treatment Aims and scope

Fractures and their profiles are diagnosed by macro- and micro-fractographic analysis after impact bending tests of Charpy specimens of a high-ductility steel of strength class X80. The results of the analysis of fracture surfaces and fracture diagrams are used to determine the unit amount of energy expended on ductile fracture in various zones in terms of the average length of the ridges (bridges) in the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. B. Arabei, I. Yu. Pyshmintsev, V. M. Farber, et al., “Features of the fracture of pipe steels in strength class X80 (K65),” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 3, 12 – 20 (2012).

  2. A. B. Arabei, V. M. Farber, I. Yu. Pyshmintsev, et al., “Microstructure and dispersed phases in the high-strength steels of large-diameter gas-line pipe,” Nauka Tekh. Gazovoi Prom-sti, No. 4, 86 – 91 (2011).

  3. M. V. Maisuradze, Yu. G. Eismondt, and Yu. V. Yudin, “Determination of the optimum design parameters of drip-type evaporative coolers,” Metalloved. Term. Obrab. Met., No. 10, 54 – 59 (2010

  4. V. A. Khotinov, V. M. Farber, A. N. Morozova, and N. V. Lezhnin, “Use of oscillograms of the impact bending of Charpy specimens to evaluate the energy content of the fracture of highstrength steels,” Proizvod. Prokata, No. 11, 28 – 35 (2013).

  5. L. R. Botvina, Fracture: Kinetics, Mechanisms, General Laws [in Russian], Nauka, Moscow (2008).

    Google Scholar 

  6. Ya. B. Fridman, Mechanical Properties of Metals. Vol. 2. Mechanical Tests. Structural Strength [in Russian], Mashinostroenie, Moscow (1974).

    Google Scholar 

  7. A. A. Gudkov, Fracture Toughness of Steel [in Russian], Metallurgiya, Moscow (1989).

    Google Scholar 

  8. ASTM E2298. Standard Test Method for Instrumented Impact Testing of Metallic Materials (2013).

  9. I. Yu. Pyshmintsev, A. B. Arabei, V. M. Farber, et al, “Laboratory criteria of the fracture toughness of high-strength steels for gas-line pipe,” Fiz. Met. Metalloved., 113(4), 411 – 417 (2012).

    Article  Google Scholar 

  10. V. M. Farber, A. B. Arabei, I. Yu. Pyshmintsev, and V. A. Khotinov, “Fractographic criteria of the fracture toughness of pipes in strength class X80,” Proizvod. Prokata, No. 3, 7 – 11 (2011).

  11. A. A. Saltykov, Stereographic Metallography [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  12. V. M. Farber, I. Yu. Pyshmintsev, A. B. Arabei, et al., “Model of the formation and growth of fissures,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 5, 34 – 39 (2012).

  13. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, Inc., nonlinear (1996).

  14. T. E. Ekobori, Physics and Mechanics of Fracture and the Strength of Solids [Russian translation], Metallurgiya, Moscow (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khotinov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 22 – 25, June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farber, V.M., Khotinov, V.A., Morozova, A.N. et al. Diagnosis of the Fracture and Fracture Energy of High-Ductility Steels in Instrumented Impact-Bending Tests. Met Sci Heat Treat 57, 329–333 (2015). https://doi.org/10.1007/s11041-015-9884-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-015-9884-4

Key words

Navigation