Skip to main content
Log in

Effect of chemical composition on the strength of alloys of the Al-Cu-Mg-Ag system after heating at 180–210°C

  • Aluminum Alloys
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The effect of the chemical composition, in particular, of alloying with silver (up to 0.6%) and of the Cu-Mg ratio (from 21.2 to 1.6) in alloys of the Al-(2.4–6.3)% Cu-(0.30–2.0)% Mg system on their mechanical properties is studied. Comparative analysis of the strength characteristics of alloys and of the kinetics of their overaging in tests of pressed semiproducts with a thickness of 10 mm in states T and T1 and after additional heating at a temperature of 180–210°C is performed. Equations characterizing the softening due to the overaging are obtained, which make it possible to compare the properties of alloys under different modes of additional heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. J. Polmear and M. J. Couper, “Design and development of an experimental wrought aluminum alloy for use at elevated temperatures,” Metall. Trans. A, 19A(4), 1027–1035 (1988).

    CAS  Google Scholar 

  2. I. J. Polmear, G. Pons, Y. Barbaux, et al., “After Concorde: evaluation of creep resistant Al-Cu-Mg-Ag alloys,” Mater. Sci. Technol., 15(8), 861–868 (1999).

    CAS  Google Scholar 

  3. R. J. Chester and I. J. Polmear, “Precipitation in Al-Cu-Mg-Ag alloys,” in: The Metallurgy of Light Alloys, The Institution of Metallurgists, London, March (1983), pp. 75–81.

    Google Scholar 

  4. N. Sano, K. Hono, T. Sakurai, et al., “Atom-probe analysis of θ′-and Ω-phases in an Al-Cu-Mg-Ag alloy,” Scr. Metall. Mater., 25(2), 491–496 (1991).

    Article  CAS  Google Scholar 

  5. Y. C. Chang and J. M. Howe, “Composition and stability of Ω-phase in an Al-Cu-Mg-Ag alloy,” Metall. Trans. A, 24A(7), 1461–1470 (1993).

    CAS  Google Scholar 

  6. K. M. Knowles and W. M. Stobbs, “The structure of {111} age-hardening precipitates in Al-Cu-Mg-Ag alloys,” Acta Crystallogr., B44(31), 207–227 (1988).

    CAS  Google Scholar 

  7. L. M. Wang and H. M. Flower, “Precipitation of the Ω-phase in 2024 and 2124 aluminum alloys, ” Scr. Mater., 41, 391–396 (1999).

    Article  CAS  Google Scholar 

  8. J. M. Howe, “Analytical transmission electron microscopy analysis of Ag and Mg segregation to {111}θ precipitate plates in an Al-Cu-Mg-Ag alloy,” Philos. Mag. Lett., 70(3), 111–120 (1994).

    CAS  Google Scholar 

  9. S. P. Ringer, W. Yeung, B. C. Muddle, et al., “Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures,” Acta Metall. Mater., 42(5), 1715–1725 (1994).

    Article  CAS  Google Scholar 

  10. S. R. Arumalla and I. J. Polmear, “Fatigue and creep behavior of aged alloys based on Al-4% Cu-0.3% Mg,” in: Strength of Metals and Alloys (ICSMA7). Proc. 7th Int. Conf. on the Strength of Metals and Alloys, Montreal, Canada, 12–16 August, Vol. 1 (1985), pp. 453–458.

    Google Scholar 

  11. O. Beffort, C. Solenthaler, P. J. Uggowitzer, et al., “High toughness and high strength spray-deposited AlCuMgAg-base alloys for use at moderately elevated temperatures,” Mater. Sci. Eng. A, A191(1–2), 121–134 (1995).

    CAS  Google Scholar 

  12. S. G. Alieva, M. B. Al’tman, S. M. Ambartsumyan, et al., Commercial Aluminum Alloys [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  13. V. I. Elagin, Alloying of Deformable Aluminum Alloys by Transition Metals [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  14. V. V. Teleshov, “Numerical simulation of restored strength of high-temperature Al-Cu-Mg aluminum alloys,” Metally, No. 2(March–April), 92–96 (2000).

  15. V. V. Teleshov, “Use of electrical properties in the fields of metal science, heat treatment, and control of quality of semiproducts from deformable aluminum alloys,” Tekhnol. Legk. Splavov, No. 3, 52–78 (2001).

  16. V. V. Teleshov, “Effect of overaging parameters on the electrical conductivity of semiproducts from high-temperature aluminum alloys,” Tekhnol. Legk. Splavov, Nos. 1–2, 85–91 (1999).

  17. S. P. Ringer, T. Sakurai, and I. J. Polmear, “Origins of hardening in aged Al-Cu-Mg-(Ag) alloys,” Acta Mater., 45(9), 3731–3744 (1997).

    Article  CAS  Google Scholar 

  18. A. Carg, Y. C. Chang, and J. M. Howe, “Precipitation of the Ω-phase in an Al-4.0Cu-0.5Mg alloy,” Scr. Metall. Mater., 24(4), 677–680 (1990).

    Article  Google Scholar 

  19. H. D. Chopra, L. J. Liu, B. C. Muddle, et al., “The structure of metastable {111}α precipitates in an Al-2.5 wt.% Cu-1.5 wt.% Mg-0.5 wt.% Ag alloy,” Phil. Mag. Lett., 71(6), 319–324 (1995).

    CAS  Google Scholar 

  20. L. N. Bol’shev and N. V. Smirnov, Tables of Mathematical Statistics [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  21. I. N. Fridlyander, Aluminum Deformable Structural Alloys [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  22. J. Martin and R. Doherty, Stability of Microstructure of Metallic Systems [Russian translation], Atomizdat, Moscow (1978).

    Google Scholar 

  23. L. B. Berg, “Accelerated artificial aging regimes of commercial aluminum alloys,” Mater. Sci. Eng., A280, 83–90 (2000).

    Google Scholar 

  24. V. V. Teleshov, “Analysis of thermal stability of high-temperature aluminum alloys of the Al-Cu-Mn system,” Tsvetn. Met., No. 6, 71–77 (2002).

    Google Scholar 

  25. D. D. Bergner, “Diffusion von Fremdelementen in Aluminium,” Neue Hutte, 29(6), 207–210 (1984).

    CAS  Google Scholar 

  26. C. Sigli, L. Maenner, C. Cztur, et al., “Phase diagram, solidification and heat treatment of aluminum alloys,” in: Int. Conf. on Aluminum Alloys ICAA6, Vol. 1 (1998), pp. 87–98.

    Google Scholar 

  27. V. D. Scott, S. Kerry, and R. L. Trumper, “Nucleation and growth of precipitates in Al-Cu-Mg-Ag alloys,” Mater. Sci. Technol., 3(10), 827–835 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 9–17, March, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teleshov, V.V., Andreev, D.A. & Golovleva, A.P. Effect of chemical composition on the strength of alloys of the Al-Cu-Mg-Ag system after heating at 180–210°C. Met Sci Heat Treat 48, 104–112 (2006). https://doi.org/10.1007/s11041-006-0052-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-006-0052-8

Keywords

Navigation