Skip to main content
Log in

Correlation Inequalities for Schrödinger Operators

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

The purpose of the present paper is to analyze correlation structures of the ground states of the Schrödinger operator. We construct Griffiths inequalities for the ground state expectations by applying operator-theoretic correlation inequalities. As an example of such an application, we study the ground state properties of Schrödinger operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J.E., Herbst, I.W., Simon, B.: Schrödinger operators with magnetic fields III. Atoms in homogeneous magnetic field. Comm. Math. Phys. 79, 529–572 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  2. Benassi, C., Lees, B., Ueltschi, D.: Correlation inequalities for the quantum XY model. J. Stat. Phys. 164, 1157–1166 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. 1. C- and W-algebras, symmetry groups, decomposition of states, 2nd edn. Texts and Monographs in Physics. Springer-Verlag, New York (1987)

    Google Scholar 

  4. Bös, W.: Direct integrals of selfdual cones and standard forms of von Neumann algebras. Invent. Math. 37, 241–251 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  6. Faris, W.G.: Invariant cones and uniqueness of the ground state for fermion systems. J. Math Phys. 13, 1285–1290 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  7. Fröhlich, J.: On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. H. Poincaré, Sect. A (N.S.) 19, 1–103 (1973)

    MathSciNet  MATH  Google Scholar 

  8. Fröhlich, J., Israel, R., Lieb, E.H., Simon, B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Comm. Math. Phys. 62, 1–34 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  9. Glimm, J., Jaffe, A., Spencer, T.: Phase transitions for \({{\varphi }}^{4}_{2}\) quantum fields. Comm. Math. Phys. 45, 203–216 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ginibre, J.: General formulation of Griffiths’ inequalities. Comm. Math. Phys. 16, 310–328 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gross, L.: Existence and uniqueness of physical ground states. Jour. Funct. Anal. 10, 52–109 (1972)

    Article  MathSciNet  Google Scholar 

  12. Griffiths, R.B.: Correlations in Ising ferromagnets. I. Jour. Math. Phys. 8, 484–488 (1967)

    Article  ADS  Google Scholar 

  13. Griffiths, R.B.: Correlations in Ising ferromagnets. II. Jour. Math. Phys. 8, 478–483 (1967)

    Article  ADS  Google Scholar 

  14. Griffiths, R.B.: Rigorous results for Ising ferromagnets of arbitrary spin. Jour. Math. Phys. 10, 1559–1565 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  15. Griffiths, R.B.: Rigorous results and theorems. In: Domb, C., Green, M.S. (eds.) Phase transitions and critical phenomena, vol. 1, pp 7–109 (1972)

  16. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Article  ADS  Google Scholar 

  17. Kelly, D.G., Sherman, S.: General Griffiths’ inequalities on correlations in Ising ferromagnets. Jour. Math. Phys. 9, 466–484 (1968)

    Article  ADS  Google Scholar 

  18. Kishimoto, A., Robinson, D.W.: Positivity and monotonicity properties of C0, -semigroups. I. Comm. Math. Phys. 75 (1980), 67-84. Positivity and monotonicity properties of C0 -semigroups. II. Comm. Math. Phys. 75, 85–101 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kitatani, H.: Griffiths inequalities for Ising spin glasses on the Nishimori line. J. Phys. Soc. Jpn. 78, 044714 (2009)

    Article  ADS  Google Scholar 

  20. Lenz, W.: Beitrag zum Verstandnis der magnetischen Erscheinunge in festen Korpern. Phys. Zs. 21, 613–615 (1920)

    Google Scholar 

  21. Lieb, E.H., Simon, B.: Monotonicity of the electronic contribution to the Born-Oppenheimer energy. J. Phys. B: Atom. Molec. Phys. 11, 537–542 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lieb, E.H.: Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lieb, E.H., Loss, M.: Analysis, Second Edition, Graduate studies in mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  24. Miyao, T.: Nondegeneracy of ground states in nonrelativistic quantum field theory. J. Operator Theory 64, 207–241 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Miyao, T.: Self-dual cone analysis in condensed matter physics. Rev. Math. Phys. 23, 749–822 (2011)

    Article  MathSciNet  Google Scholar 

  26. Miyao, T.: Ground state properties of the SSH model. Jour. Stat. Phys. 149, 519–550 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. Miyao, T.: Monotonicity of the polaron energy. Rep. Math. Phys. 74, 379–398 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. Miyao, T.: Monotonicity of the polaron energy II: General theory of operator monotonicity. J. Stat. Phys. 153, 70–92 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Miyao, T.: Quantum Griffiths inequalities. J. Stat. Phys. 164, 255–303 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Miyao, T.: Rigorous results concerning the Holstein–Hubbard model. Ann. Henri Poincare 18, 193–232 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Miyao, T.: Nagaoka’s theorem in the Holstein-Hubbard model. Ann. Henri Poincare 18, 2849–2871 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Miura, Y.: On order of operators preserving selfdual cones in standard forms. Far East. J. Math. Sci. (FJMS) 8, 1–9 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Morita, S., Nishimori, H., Contucci, P.: Griffiths inequalities in the Nishimori line. Prog. Theor. Phys. Supplement 157, 73–76 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. Percus, J.K.: Correlation inequalities for Ising spin lattices. Comm. Math. Phys. 40, 283–308 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  35. Reed, M., Simon, B.: Methods of modern mathematical physics, vol. I. Revised and Enlarged Edition, Academic Press, New York (1980)

    MATH  Google Scholar 

  36. Reed, M., Simon, B.: Methods of modern mathematical physics, vol. II. Academic Press, New York (1975)

    MATH  Google Scholar 

  37. Reed, M., Simon, B.: Methods of modern mathematical physics, vol. IV. Academic Press, New York (1978)

    MATH  Google Scholar 

  38. Shen, S.H.: Strongly correlated electron systems: Spin-reflection positivity and some rigorous results. Int. J. Mod. Phys. B 12, 709 (1998)

    Article  ADS  Google Scholar 

  39. Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7, 447–526 (1982)

    Article  MathSciNet  Google Scholar 

  40. Tian, G.-S.: Lieb’s spin-reflection positivity methods and its applications to strongly correlated electron systems. Jour. Stat. Phys. 116, 629–680 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referee for useful comments. This work was partially supported by KAKENHI (20554421), KAKENHI(16H03942) and KAKENHI (18K0331508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahiro Miyao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: General Theory of Correlation Inequalities

Appendix A: General Theory of Correlation Inequalities

In this appendix, we will review some basic results concerning the operator inequalities introduced in Section 3. Almost all results are taken from the author’s previous works [24, 26,27,28,29,30,31].

Proposition A.1

Let\(\{A_{n}\}_{n=1}^{\infty }\subseteq {\mathscr{B}}(\mathfrak {H})\)and let\(A\in {\mathscr{B}}(\mathfrak {H})\). Suppose that Anconverges to Ain the weak operator topology. If\(A_{n}\unrhd 0\)w.r.t.\(\mathfrak {P}\)for all\(n\in \mathbb {N}\), then\(A\unrhd 0\)w.r.t.\(\mathfrak {P}\).

Proof

By Remark 3.7 (i), 〈ξ|Anη〉 ≥ 0 for all \(\xi , \eta \in \mathfrak {P}\). Thus, \(\displaystyle \langle \xi |A\eta \rangle =\lim _{n\to \infty }\langle \xi |A_{n}\eta \rangle \ge 0 \) for all \(\xi , \eta \in \mathfrak {P}\). By Remark 3.7 (i) again, we conclude that \(A\unrhd 0\) w.r.t. \(\mathfrak {P}\). □

Proposition A.2

Let Abe a self-adjoint positive operator on\(\mathfrak {H}\). Assume that\( e^{-\beta A} \unrhd 0\)w.r.t.\(\mathfrak {P}\)for all β ≥ 0. Assume that\(E=\inf \sigma (A)\)is an eigenvalue of A. Then there exists a nonzero vector\(\xi \in \ker (A-E)\)such that ξ ≥ 0 w.r.t.\(\mathfrak {P}\).

Proof

Let \(\eta \in \mathfrak {H}\). By Theorem 3.4, we can express η as η = ηR + iηI with \(\eta _{R}, \eta _{I} \in \mathfrak {H}_{\mathbb {R}}\). Now, we define an antilinear involution J by Jη = ηRiηI. Clearly,

$$ \eta_{R}=\frac{1}{2}(\eta+J\eta),\ \ \ \eta_{I}=\frac{1}{2i} (\eta-J\eta). $$
(A.1)

Moreover, \(\mathfrak {H}_{\mathbb {R}}=\{\eta \in \mathfrak {H} | J\eta =\eta \}\). Because \(e^{-\beta A} \mathfrak {P} \subseteq \mathfrak {P}\), we see that \(e^{-\beta A} \mathfrak {H}_{\mathbb {R}} \subseteq \mathfrak {H}_{\mathbb {R}}\) for all β ≥ 0, see Remark 3.7 (i). Hence, for all β ≥ 0, we obtain

$$ Je^{-\beta A} =e^{-\beta A}J. $$
(A.2)

Let \(\xi \in \ker (A-E)\) with ξ ≠ 0. ξ can be expressed as ξ = ξR + iξI with \(\xi _{R}, \xi _{I} \in \mathfrak {H}_{\mathbb {R}}\). Because ξ ≠ 0, we have ξR ≠ 0 or ξI ≠ 0. By (A.1) and (A.2), we know that \(\xi _{R}, \xi _{I}\in \ker (A-E) \cap \mathfrak {H}_{\mathbb {R}}\). Without loss of generality, we may assume that ξR ≠ 0. By Definition 3.2 (ii) and Theorem 3.4, we have a unique decomposition ξR = ξR,+ξR,−, where \(\xi _{R, \pm } \in \mathfrak {P}\) with 〈ξR,+|ξR,−〉 = 0. Let |ξR| = ξR,+ + ξR,−. Because ∥ξR∥ = ∥|ξR|∥, we have

$$ e^{-\beta E} \|\xi_{R}\|^{2}=\langle \xi_{R}|e^{-\beta A} \xi_{R} \rangle \le \langle |\xi_{R}||e^{-\beta A} | \xi_{R}| \rangle \le e^{-\beta E} \|\xi_{R}\|^{2}. $$
(A.3)

Thus, \(|\xi _{R}| \in \ker (A-E)\). Clearly, |ξR|≥ 0 w.r.t. \(\mathfrak {P}\). □

Theorem A.3

Let A be a self-adjoint positive operator on\(\mathfrak {H}\)and\(B\in {\mathscr{B}}(\mathfrak {H})\). Suppose that

  • (i)\(e^{-\beta A} \unrhd 0\)w.r.t.\(\mathfrak {P}\)for all β ≥ 0;

  • (ii)\(B\unrhd 0\)w.r.t.\(\mathfrak {P}\).

Then we have\(e^{-\beta (A-B)}\unrhd 0\)w.r.t.\(\mathfrak {P}\)for all β ≥ 0.

Proof

By (ii) and Proposition A.1,

$$ e^{\beta B}=\sum\limits_{n\ge 0} \underbrace{\frac{\beta^{n}}{n!}}_{\ge 0} \underbrace{B^{n}}_{\unrhd 0} \unrhd 0\ \ \text{w.r.t. } \mathfrak{P} \text{ for all } \beta \ge 0. $$
(A.4)

Hence, by (i) and Proposition 3.8 (ii),

$$ \Big(\underbrace{e^{-\beta A/n}}_{\unrhd 0} \underbrace{e^{\beta B/n}}_{\unrhd 0} \Big)^{n} \unrhd 0\ \ \ \text{w.r.t. } \mathfrak{P} \text{ for all } \beta \ge 0. $$
(A.5)

Using the Trotter–Kato product formula(e.g., [35, Theorem S. 21]) and Proposition A.1, we arrive at the desired assertion. □

Theorem A.4

Let A, B be self-adjoint positive operators on\(\mathfrak {H}\). Assume that B = AC with\(C\in {\mathscr{B}}(\mathfrak {H})\). Suppose that

  • (i)\(e^{-\beta A}\unrhd 0\)w.r.t.\(\mathfrak {P}\)for all β ≥ 0;

  • (ii)\(C\unrhd 0\)w.r.t.\(\mathfrak {P}\).

Then we have\(e^{-\beta B }\unrhd e^{-\beta A}\)w.r.t.\(\mathfrak {P}\)for all β ≥ 0.

Proof

By the Duhamel formula, we have the norm-convergent expansion

$$ \begin{array}{@{}rcl@{}} e^{-\beta B}&=&\sum\limits_{n=0}^{\infty}D_{n}(\beta), \end{array} $$
(A.6)
$$ \begin{array}{@{}rcl@{}} D_{n}(\beta)&=&{\int}_{S_{n}(\beta)} e^{-s_{1} A}C e^{-s_{2} A}C{\cdots} e^{-s_{n} A} C e^{-(\beta-{\sum}_{j=1}^{n}s_{j})A}, \end{array} $$
(A.7)

where \({\int \limits }_{S_{n}(\beta )}={\int \limits }_{0}^{\beta }ds_{1}{\int \limits }_{0}^{\beta -s_{1}}ds_{2}{\cdots } {\int \limits }_{0}^{\beta -{\sum }_{j=1}^{n-1}s_{j}} ds_{n}\) and D0(β) = eβA. Since \(C \unrhd 0\) and \(e^{-t A}\unrhd 0\) w.r.t. \(\mathfrak {P}\) for all t ≥ 0, it holds that, by Proposition 3.8 (ii),

$$ \underbrace{ e^{-s_{1} A} }_{\unrhd 0} \underbrace{C}_{\unrhd 0} \underbrace{ e^{-s_{2} A} }_{\unrhd 0}{\cdots} \underbrace{e^{-s_{n} A}}_{\unrhd 0} \underbrace{C}_{\unrhd 0} \underbrace{e^{-(\beta-{\sum}_{j=1}^{n}s_{j})A}}_{\unrhd 0} \unrhd 0 $$
(A.8)

provided that \(s_{1} \ge 0, \dots , s_{n}\ge 0\) and βs1 −⋯ − sn ≥ 0. Thus, by Proposition A.1, we obtain \(D_{n}(\beta )\unrhd 0\) w.r.t. \(\mathfrak {P}\) for all n ≥ 0. Accordingly, by (A.6) and Proposition A.1 again, we have \(e^{-\beta B}\unrhd D_{n=0}(\beta )=e^{-\beta A}\) w.r.t. \(\mathfrak {P}\) for all β ≥ 0. □

Remark A.5

By (i), there exists a unique \(\xi \in \mathfrak {H}\) such that ξ > 0 w.r.t. \(\mathfrak {P}\) and PA = |ξ〉〈ξ|. Of course, ξ satisfies \(A\xi =\inf \sigma (A)\xi \). ♢

Theorem A.6

Let A be a self-adjoint positive operator on\(\mathfrak {H}\), and let\(B\in {\mathscr{B}}(\mathfrak {H})\). Suppose the following:

  • (i)\(e^{-\beta A} \unrhd 0\)w.r.t.\(\mathfrak {P}\)for all β ≥ 0.

  • (ii)B is ergodic w.r.t.\(\mathfrak {P}\).

Then, \(e^{-\beta (A-B)} \rhd 0\)w.r.t. \(\mathfrak {P}\)for all β > 0.

Proof

Set H = AB. We apply Fröhlich’s idea [7] and use the Duhamel expansion:

$$ \begin{array}{@{}rcl@{}} e^{-\beta H}&=&\sum\limits_{n\ge 0} \mathscr{D}_{n}(\beta), \end{array} $$
(A.9)
$$ \begin{array}{@{}rcl@{}} \mathscr{D}_{n}(\beta) &=& {\int}_{S_{n}(\beta)} e^{-s_{1} A} B e^{-s_{2} A} {\cdots} e^{-s_{n} A} B e^{-(\beta-{\sum}_{j=1}^{n} s_{j}) A}. \end{array} $$
(A.10)

In a manner similar to that used in the proof of Theorem A.4, we know that

$$ \begin{array}{@{}rcl@{}} &\mathscr{D}_{n}(\beta) \unrhd 0, \end{array} $$
(A.11)
$$ \begin{array}{@{}rcl@{}} &e^{-s_{1} A} B e^{-s_{2} A} {\cdots} e^{-s_{n} A} B e^{-(\beta-{\sum}_{j=1}^{n}s_{j}) A} \unrhd 0 \end{array} $$
(A.12)

w.r.t. \(\mathfrak {P}\), provided that \(s_{1} \ge 0, \dots , s_{n}\ge 0\) and βs1 −⋯ − sn ≥ 0.

Let \(\xi , \eta \in \mathfrak {P}\backslash \{0\}\). Since \(e^{-\beta A} \unrhd 0\) w.r.t. \(\mathfrak {P}\) for all β ≥ 0, we have \(e^{-\beta A} \eta \in \mathfrak {P}\backslash \{0\}\). Let β > 0 be fixed arbitrarily. Because B is ergodic w.r.t. \(\mathfrak {P}\), there exists an \(n\in \{0\}\cup \mathbb {N}\) such that 〈ξ|BneβAη〉 > 0. Now, let

$$ F(s_{1}, \dots, s_{n})=\Big\langle \xi \Big|e^{-s_{1} A} B e^{-s_{2} A} {\cdots} e^{-s_{n} A} B e^{-(\beta-{\sum}_{j=1}^{n}s_{j}) A} \eta\Big\rangle. $$
(A.13)

By (A.12), it holds that \(F(s_{1}, \dots , s_{n}) \ge 0\). In addition, we have \( F(0, \dots , 0)=\langle \xi |B^{n} e^{-\beta A}\eta \rangle >0 \). Because \(F(s_{1},\dots , s_{n})\) is continuous in \(s_{1}, \dots , s_{n}\), we obtain

$$ \langle \xi|\mathscr{D}_{n}(\beta) \eta\rangle ={\int}_{S_{n}(\beta)} F(s_{1}, \dots, s_{n}) >0. $$
(A.14)

By (A.9) and (A.11), we see that \( e^{-\beta H} \unrhd {\mathscr{D}}_{n}(\beta ) \), which implies

$$ \langle \xi|e^{-\beta H}\eta\rangle \ge \langle \xi|\mathscr{D}_{n}(\beta)\eta\rangle>0. $$
(A.15)

Since ξ and η are in \(\mathfrak {P}\backslash \{0\}\), we conclude that eβHη > 0 w.r.t. \(\mathfrak {P}\). Since β is arbitrary, we obtain that \(e^{-\beta H} \rhd 0\) w.r.t. \(\mathfrak {P}\) for all β > 0. □

Theorem A.7

Let\(A\in {\mathscr{B}}(\mathfrak {H})\). Assume that u > 0 w.r.t.\(\mathfrak {P}\)and\(A\unrhd 0\)w.r.t.\(\mathfrak {P}\). Then, 〈u|Au〉 = 0 if and only if A = 0.

Proof

We will divide the proof into several steps.

  • Step 1.Let \(A\in {\mathscr{B}}(\mathfrak {H})\). IfAu = 0 for all \(u\in \mathfrak {P}\), thenA = 0.

Proof

By Remark 3.3, each \(u\in \mathfrak {H}\) can be written as u = v1v2 + i(w1w2), where \(v_{1}, v_{2}, w_{1}, w_{2}\in \mathfrak {P}\) such that 〈v1|v2〉 = 0 and 〈w1|w2〉 = 0. Thus, the assumption implies that Au = 0 for all\(u\in \mathfrak {H}\). □

  • Step 2.Let \(A\in {\mathscr{B}}(\mathfrak {H})\)withA ≠ 0. Assume thatu > 0 w.r.t. \(\mathfrak {P}\). If \(A\unrhd 0\)w.r.t. \(\mathfrak {P}\), thenAu ≠ 0.

Proof

Assume that Au = 0. Then, 〈v|Au〉 = 0 for all \(v\in \mathfrak {P}\), implying that 〈Av|u〉 = 0. Since u > 0 and Av ≥ 0 w.r.t. \(\mathfrak {P}\), we conclude that Av must be zero. Because v is arbitrary, A = 0 by Step 1. □

Completion of the proof.

Suppose that 〈u|Au〉 = 0. Assume that A ≠ 0. Since Au ≥ 0 and u > 0 w.r.t. \(\mathfrak {P}\), Au must be zero. However, this contradicts with Step 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyao, T. Correlation Inequalities for Schrödinger Operators. Math Phys Anal Geom 23, 3 (2020). https://doi.org/10.1007/s11040-019-9324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-019-9324-6

Keywords

Mathematics Subject Classification (2010)

Navigation