Skip to main content
Log in

Block Toeplitz Determinants, Constrained KP and Gelfand-Dickey Hierarchies

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We propose a method for computing any Gelfand-Dickey τ function defined on the Segal-Wilson Grassmannian manifold as the limit of block Toeplitz determinants associated to a certain class of symbols \({\cal W}(t;z)\). Also truncated block Toeplitz determinants associated to the same symbols are shown to be τ functions for rational reductions of KP. Connection with Riemann-Hilbert problems is investigated both from the point of view of integrable systems and block Toeplitz operator theory. Examples of applications to algebro-geometric solutions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Inst. Hautes Études Sci. Publ. Math. 61, 5–65 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pressley, A., Segal, G.: Loop Groups. Oxford Mathematical Monographs. Oxford University Press, Oxford (1986)

    Google Scholar 

  3. Sato, M.: KP hierarchy and Grassmann manifolds. Proc. Sympos. Pure Math. 49, 51–66 (1989)

    Google Scholar 

  4. Mulase, M.: Cohomological structure in soliton equations and Jacobian varieties. J. Differential Geom. 19, 403–430 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Szegö, G.: On certain hermitian forms associated with the Fourier series of a positive function. Comm. Seminaire Math. Univ. Lund, tome suppl. 223–237 (1952)

  6. Widom, H.: Asymptotic behavior of block-Toeplitz matrices and determinants I. Adv. Math. 13, 284–322 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Widom, H.: On the limit of block-Toeplitz determinants. Proc. Amer. Math. Soc. 50, 167–173 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Widom, H.: Asymptotic behavior of block-Toeplitz matrices and determinants II. Adv. Math. 21(1), 1–29 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Borodin, A., Okounkov, A.: A Fredholm formula for Toeplitz determinants. Integral Equations Operator Theory 37(4), 386–396 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Basor, E., Widom, H.: On a Toeplitz determinant identity of Borodin and Okounkov. Integral Equations Operator Theory 37(4), 397–401 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Böttcher, A.: One more proof of the Borodin-Okounkov formula for Toeplitz determinants. Integral Equations Operator Theory 41(1), 123–125 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Geronimo, J.C., Case, K.M.: Scattering theory and polynomials orthogonal on the unit circle. J. Math. Phys. 20(2), 299–310 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Plemelj, J.: Problems in the sense of Riemann and Klein. Interscience Tracts in Pure and Applied Mathematics, vol 16. Wiley, New York (1964)

    Google Scholar 

  14. Sattinger, D.H., Szmigielski, J.S.: Factorization and the dressing method for the Gelfand-Dickey hierarchy. Phys. D 64(1–3), 1–34 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Itzykson, C., Zuber, J.: Combinatorics of the modular group 2. The Kontsevich integrals. Internat. J. Modern Phys. A 7(23), 5661–5705 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Di Francesco, P.: 2-D quantum and topological gravities, matrix models and integrable differential systems. In: Conte, R. (ed.) The Painlevé property. CRM Ser. Math. Phys., pp. 229–285. Springer, New York (1999)

    Google Scholar 

  17. Dickey, L.A.: Chains of KP, semi-infinite 1-Toda lattice hierarchy and Kontsevich integral. J. Appl. Math. 1(4), 175–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dickey, L.A.: On the constrained KP hierarchy II. Lett. Math. Phys. 35, 229–236 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Krichever, I.: General rational reductions of the KP hierarchy and their symmetries. Funct. Anal. Appl. 29, 75–80 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Aratyn, H., Nissimov, E., Pacheva, S.: Constrained KP hierarchies: additional symmetries, Darboux-Bäcklund solutions and relations to multi-matrix models. Internat. J. Modern Phys. A 12(7), 1265–1340 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. van de Leur, J.: The vector k-constrained KP hierarchy and Sato’s Grassmannian. J. Geom. Phys. 23(1), 83–96 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Helminck, G.F., van de Leur, J.: An analytic description of the vector constrained KP hierarchy. Comm. Math. Phys. 193, 627–641 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. London Math. Soc. 21, 420–440 (1923)

    Article  Google Scholar 

  24. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. Roy. Soc. London A 118, 557–583 (1928)

    Article  ADS  Google Scholar 

  25. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators II. The identity P n = Q m. Proc. Roy. Soc. London A 134, 471–485 (1932)

    Article  ADS  Google Scholar 

  26. Schwarz, A.: On solutions to the string equation. Modern Phys. Lett. 6(29), 2713–2725 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Its, A.R., Jin, B.Q., Korepin, V.E.: Entropy of XY Spin Chain and Block Toeplitz determinants. In: Binder, I., Kreimer, D. (eds.) Universality and Renormalization. Fields Institute Communications, vol. 50, pp. 151–183. American Mathematical Society, Providence (2007)

    Google Scholar 

  28. Its, A.R., Mezzadri, F., Mo, M.Y.: Entanglement entropy in quantum spin chains with finite range interaction. Math. Phys. arXiv:0708.0161v1 (2008, in press)

  29. Basor, E., Ehrhardt, T.: Asymptotics of block Toeplitz determinants and the classical dimer model. Comm. Math. Phys. 274(2), 427–455 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Simon, B.: Trace ideals and their applications. Math. Surveys Monogr. 120 (2005)

  31. Ince, E.L.: Ordinary Differential Equations. Dover, New York (1926)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cafasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cafasso, M. Block Toeplitz Determinants, Constrained KP and Gelfand-Dickey Hierarchies. Math Phys Anal Geom 11, 11–51 (2008). https://doi.org/10.1007/s11040-008-9038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-008-9038-7

Keywords

Mathematics Subject Classifications (2000)

Navigation