Skip to main content
Log in

Improving Vehicle Localization in a Smart City with Low Cost Sensor Networks and Support Vector Machines

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

A smart city’s main purpose is to provide intelligent responses to different problems of the rapid urban population growth. For instance, integrating fleet management solutions into intelligent transportation systems (ITS) can efficiently resolve transportation problems relying on each vehicle information. Usually, the position estimate is ensured by the integration of the Global Positioning System (GPS) and Inertial Navigation Systems (INS). For multisensor data fusion, the Extended Kalman Filter (EKF) is generally applied using the sensor’s measures and the GPS position as a helper. However, the INS are expensive and require more complex computing which induces restrictions on their implementation. Furthermore, the EKF performance depends on the vehicle dynamic variations and may quickly diverge because of environmental changes. In this paper, we present a robust low cost approach using EKF and Support Vector Machines (SVM) to reliably estimate the vehicle position by limiting the EKF drawbacks. The sensors used are a GPS augmented by a low cost wireless sensor network. When GPS signals are available, we train SVM on different dynamics and outage times to learn the position errors so we can correct the future EKF predictions during GPS signal outages. We obtain empirically an improvement of up to 94% over the simple EKF predictions in case of GPS failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xiong Z, Sheng H, Rong W, Cooper DE (2012) Intelligent transportation systems for smart cities: a progress review. Sci Chin Inf Sci 55:2908–2914. doi:10.1007/s11432-012-4725-1

    Article  Google Scholar 

  2. El Faouzi NE, Klein LA (2016) Data fusion for ITS: techniques and research needs. Transp Res Proced 15:495–512. doi:10.1016/j.trpro.2016.06.042

    Article  Google Scholar 

  3. De Ponte Müller F (2017) Survey on ranging sensors and cooperative techniques for relative positioning of vehicles. Sensors 17:1–27. doi:10.3390/s17020271

    Article  Google Scholar 

  4. Grewal MS (2011) Kalman filtering. Int Encyclop Statist Sci 1:705–708. doi:10.1007/978-3-642-04898-2_321

    Article  Google Scholar 

  5. Niu X, Ban Y, Zhang Q, Zhang T, Zhang H, Liu J (2015) Quantitative analysis to the impacts of IMU quality in GPS/INS deep integration. Micromachines 6:1082–1099. doi:10.3390/mi6081082

    Article  Google Scholar 

  6. Zhang H, Zhao Y (2011) The performance comparison and analysis of extended Kalman filters for GPS/DR navigation. Optik - Int J Light Electron Opt 122:777–781. doi:10.1016/j.ijleo.2010.05.023

    Article  Google Scholar 

  7. Shen Z, Georgy J, Korenberg M J, Noureldin A (2011) Low cost two dimension navigation using an augmented Kalman filter/ fast orthogonal search module for the integration of reduced inertial sensor system and global positioning system. Trans Res Part C: Emerg Technol 19:1111–1132. doi:10.1016/j.trc.2011.01.001

    Article  Google Scholar 

  8. Tamazin M, Noureldin A, Korenberg MJ, Kamel AM (2016) A new high-resolution GPS multipath mitigation technique using fast orthogonal search. J Navig 69:794–814. doi:10.1017/s0373463315001022

    Article  Google Scholar 

  9. Abd Rabbou M, El-Rabbany A (2015) Integration of GPS precise point positioning and MEMS-based INS using unscented particle filter. Sensors 15:7228–7245. doi:10.3390/s150407228

    Article  Google Scholar 

  10. Zhao Y (2014) An improved unscented particle filter with global sampling strategy. J Comput Eng :1–6. doi:10.1155/2014/175820

  11. Noureldin A, El-Shafie A, Bayoumi M (2011) GPS/INS Integration utilizing dynamic neural networks for vehicular navigation. Inf Fus 12:48–57. doi:10.1016/j.inffus.2010.01.003

    Article  Google Scholar 

  12. Li Z, Wang J, Li B, Gao J, Tan X (2014) GPS/INS/odometer integrated system using fuzzy neural network for land vehicle navigation applications. J Navig 67:967–983. doi:10.1017/S0373463314000307

    Article  Google Scholar 

  13. Belhajem I, Ben Maissa Y, Tamtaoui A (2017) An improved robust low cost approach for real time vehicle positioning in a smart city. Ind Netw Intell Syst :77–89. doi:10.1007/978-3-319-52569-3_7

  14. Belhajem I, Ben Maissa Y, Tamtaoui A (2017) A hybrid machine learning based low cost approach for real time vehicle position estimation in a smart city. Adv Ubiq Network 2:559–572. doi:10.1007/978-981-10-1627-1_44

    Article  Google Scholar 

  15. Adusumilli S, Bhatt D, Wang H, Devabhaktuni V, Bhattacharya P (2015) A novel hybrid approach utilizing principal component regression and random forest regression to bridge the period of GPS outages. Neurocomputing 166:185–192. doi:10.1016/j.neucom.2015.03.080

    Article  Google Scholar 

  16. Bhatt D, Aggarwal P, Devabhaktuni V, Bhattacharya P (2014) A novel hybrid fusion algorithm to bridge the period of GPS outages using low-cost INS. Expert Syst Appl 41:2166–2173. doi:10.1016/j.eswa.2013.09.015

    Article  Google Scholar 

  17. Chen Q, Whitbrooka A, Aickelina U, Roadknight C (2014) Data classification using the Dempster-Shafer method. J Exper Theor Artif Intell 26:493–517. doi:10.1080/0952813X.2014.886301

    Article  Google Scholar 

  18. Lucet E, Betaille D, Donnay Fleury N, Ortiz M, SALLE D, Canou J (2009) Real-time 2D localization of a car-like mobile robot using dead reckoning and GPS, with satellite masking prediction. Accur Local Land Transp Workshop :15–18

  19. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. doi:10.1023/A:1022627411411

    MATH  Google Scholar 

  20. Shawe-Taylor J, Cristianini N (2004) Pattern analysis using convex optimisation. Kernel Methods Pattern Anal. 1:195–251. doi:10.1017/CBO9780511809682.008

    Article  Google Scholar 

  21. Hsu CW, Chang CC, Lin CJ (2010) A practical guide to support vector classification. Dissertation, National Taiwan University

  22. Basak D, Pal S, Patranabis DC (2007) Support vector regression. Neural Inf Process Lett Rev 11:203–224

    Google Scholar 

  23. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222. doi:10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  24. Breiman L (2001) Random forests. Mach Learn 45:5–32. doi:10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  25. Liaw A, Wiener M (2002) Random forests. R News 2:18–22. doi:10.7717/peerj.703/table-4

    Google Scholar 

  26. Korrapati H, Courbon J, Alizon S, Marmoiton F (2013) The institut pascal data set”: un jeu de données en extérieur, multicapteurs et datées avec réalité terrain, données d’étalonnage et outils logiciels. ORASIS, Congrès des jeunes chercheurs en vision par ordinateur 1–8

  27. Goodall C (2009) Improving usability of low-cost INS/GPS navigation systems using intelligent techniques. Dissertation, University of Calgary

Download references

Acknowledgments

This work was financially supported by the National Center of Scientific and Technical Research (CNRST), Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikram Belhajem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhajem, I., Maissa, Y.B. & Tamtaoui, A. Improving Vehicle Localization in a Smart City with Low Cost Sensor Networks and Support Vector Machines. Mobile Netw Appl 23, 854–863 (2018). https://doi.org/10.1007/s11036-017-0879-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0879-9

Keywords

Navigation