Skip to main content

Advertisement

Log in

Comprehensive evaluation and validation of optimal reference genes for normalization of qPCR data in different caprine tissues

  • Brief Report
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Quantitative real-time PCR (qPCR) is a highly reliable method for validating gene expression data in molecular studies due to its sensitivity, specificity, and efficiency. To ensure accurate qPCR results, it’s essential to normalize the expression data using stable reference genes.

Methods

This study aimed to identify suitable reference genes for qPCR studies in goats by evaluating 18 candidate reference genes (ACTB, BACH1, B2M, GAPDH, HMBS, HPRT1, PGK1, PPIA, PPIB, RPLP0, RPL19, RPS9, RPS15, RPS28, SDHA, TBP, UXT, and YWHAZ) in 10 different caprine tissues (heart, intestine, kidney, liver, lung, muscle, rumen, skin, spleen, and testis). An integrated tool called RefFinder, which incorporates various algorithms like NormFinder, GeNorm, BestKeeper, and ΔCt, was used to assess the stability of expression among these genes.

Results

After thorough analysis, ACTB, PPIB, and B2M emerged as the most stable reference genes, while RPL19, RPS15, and RPS9 were found to be the least stable. The suitability of the selected internal control genes was further validated through target gene analysis, confirming their efficacy in ensuring accurate gene expression profiling in goats.

Conclusion

The study determined that the geometric average of ACTB, PPIB, and B2M creates an appropriate normalization factor for gene expression studies in goat tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  2. Sonowal J, Patel CL, Dev K, Singh R, Barkathullah N, Malla WA, Mishra B (2022) Selection and validation of suitable reference gene for qPCR gene expression analysis in lamb testis cells under sheep pox virus infection. Gene 831:146561

    Article  CAS  PubMed  Google Scholar 

  3. Kaur R, Ahlawat S, Choudhary V, Kumari A, Kumar A, Kaur M, Vijh RK (2023) Validation of stable reference genes in peripheral blood mononuclear cells for expression studies involving vector-borne haemoparasitic diseases in bovines. Ticks Tick Borne Dis 14(4):102168

    Article  PubMed  Google Scholar 

  4. Herath S, Dai H, Erlich J, Au AY, Taylor K, Succar L, Endre ZH (2020) Selection and validation of reference genes for normalisation of gene expression in ischaemic and toxicological studies in kidney disease. PLoS ONE 15(5):e0233109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stephen AB, Vladimir B, Jeremy AG, Jan H, Jim H, Mikael K, Reinhold M, Tania N, Michael WF, Gregory LS, Jo V, Carl TW (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  Google Scholar 

  6. Nygard AB, Jørgensen CB, Cirera S, Fredholm M (2007) Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 8(1):1–6

    Article  Google Scholar 

  7. Zhang Y, Zhang XD, Liu X, Li YS, Ding JP, Zhang XR, Zhang YH (2013) Reference gene screening for analyzing gene expression across goat tissue. Asian-Australas J Anim Sci 26(12):1665–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vasu M, Ahlawat S, Choudhary V, Kaur R, Arora R, Sharma R, Singh MK (2023) Identification and validation of stable reference genes for expression profiling of target genes in diverse ovine tissues. Gene 148067.

  9. Xie F, Wang J, Zhang B (2023) RefFinder: a web-based tool for comprehensively analyzing and identifying reference genes. Funct Integr Genomics 23(2):1–5

    Article  Google Scholar 

  10. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  CAS  PubMed  Google Scholar 

  11. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):1–12

    Article  Google Scholar 

  12. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  13. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7(1):1–9

    Article  Google Scholar 

  14. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40 (15), e115

  15. Coelho TC, Chalfun-Junior A, Barreto HG, Duarte MDS, Garcia BDO, Teixeira PD, Ladeira MM (2022) Reference gene selection for quantitative PCR in liver, skeletal muscle, and jejunum of Bos indicus cattle. Rev Bras De Zootec 51

  16. Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436

    Article  CAS  PubMed  Google Scholar 

  17. Dydensborg AB, Herring E, Auclair J, Tremblay E, Beaulieu JF (2006) Normalizing genes for quantitative RT-PCR in differentiating human intestinal epithelial cells and adenocarcinomas of the colon. Am J Physiol Gastrointest 290(5):G1067–G1074

    Article  CAS  Google Scholar 

  18. Wu X, Yang W, Ren Z, Cheng J, Luo Y, Wang Y, Yang Z, Yao X, Zhao W, Li Y, Tang K (2021) Reference gene screening for analyzing gene expression in the heart, liver, spleen, lung and kidney of forest musk deer. J Vet Med Sci 83(11):1750–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Wang C, Zhang L, Lei A, Wang L, Niu L, Zhong T (2021) Genome-wide identification of reference genes for reverse transcription quantitative PCR in goat rumen. Animals 11(11):3137

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao L, Yang H, LiX, Zhou Y, Liu T, Zhao Y (2022) Transcriptome-based selection and validation of optimal reference genes in perirenal adipose developing of goat (Capra hircus). Front Vet Sci 9:1055866

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Deng C, Li J, Zhao Y (2020) Transcriptome-based selection and validation of optimal house-keeping genes for skin research in goats (Capra hircus). BMC Genom 21:1–16

    Google Scholar 

  22. Zhu W, Lin Y, Liao H, Wang Y (2015) Selection of reference genes for gene expression studies related to intramuscular fat deposition in Capra hircus skeletal muscle. PLoS ONE 10(3):e0121280

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xu Q, Lin S, Zhu J, Wang Y, Lin Y (2018) The expression stability analysis of reference genes in the process of goat intramuscular preadipocytes differentiation in goat. Acta Vet et Zootech Sin 49(5):907–918

    Google Scholar 

  24. Zhou Y, Li X, Zhang X, Li M, Luo N, Zhao Y (2023) Screening of candidate housekeeping genes in uterus caruncle by RNA-Sequence and qPCR analyses in different stages of goat (Capra hircus). Animals 13(12):1897

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luo N, Zhou Y, Chen X, Zhao Y, HuY (2024) Screening the optimal housekeeping genes (HKGs) of placenta tissues by RNA-sequence and qRT-PCR throughout gestation in goat (Capra hircus). Gene 895:147966

    Article  CAS  PubMed  Google Scholar 

  26. Sahu AR, Wani SA, Saxena S, Rajak KK, Chaudhary D, Sahoo AP, Khanduri A, Pandey A, Mondal P, Malla WA, Khan RIN (2018) Selection and validation of suitable reference genes for qPCR gene expression analysis in goats and sheep under Peste Des petits ruminants virus (PPRV), lineage IV infection. Sci Rep 8(1):1–11

    Article  CAS  Google Scholar 

  27. Aziziyan A, Sadeghi M, Ganjkhanlou M, Bahnamiri HZ (2020) Reference gene selection in adipose and muscle tissues of fat-tailed Lori-Bakhtiari lambs. Iran J Vet Med 14(3)

  28. Lozano-Villegas KJ, Rodriguez-HernandezR, Herrera-Sanchez MP, Uribe-Garcia HF, Naranjo-Gomez JS, Otero-Arroyo RJ, Rondon-Barragan IS (2021) Identification of reference genes for expression studies in the whole-blood from three cattle breeds under two states of livestock weather safety. Animals 11(11):3073

    Article  PubMed  PubMed Central  Google Scholar 

  29. Caetano LC, Miranda-Furtado CL, Batista LA, Pitangui-Molina CP, Higa TT, Padovan CC, de Sá Rosa-e-Silva ACJ (2019) Validation of reference genes for gene expression studies in bovine oocytes and cumulus cells derived from in vitro maturation. Anim Reprod 16(2):290–296

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the ICAR-Consortium Research Platform- Genomics.

Author information

Authors and Affiliations

Authors

Contributions

S.A.: conceptualization, generation of the manuscript. M.V.: data curation, formal analyses. V.C., M.M., and M.K.S.: resources. R.A. and R.S.: formal analyses. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sonika Ahlawat.

Ethics declarations

Ethical approval

This work was approved by the Institutional Animal Ethics Committee (IAEC) of ICAR-National Bureau of Animal Genetics Resources (F. No. NBAGR/IAEC/2017, dated 21.01.2017).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlawat, S., Vasu, M., Choudhary, V. et al. Comprehensive evaluation and validation of optimal reference genes for normalization of qPCR data in different caprine tissues. Mol Biol Rep 51, 268 (2024). https://doi.org/10.1007/s11033-024-09268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09268-0

Keywords

Navigation