Skip to main content

Advertisement

Log in

Oestrogen receptor-independent actions of oestrogen in cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oestrogen, the primary female sex hormone, plays a significant role in tumourigenesis. The major pathway for oestrogen is via binding to its receptor [oestrogen receptor (ERα or β)], followed by nuclear translocation and transcriptional regulation of target genes. Almost 70% of breast tumours are ER + , and endocrine therapies with selective ER modulators (tamoxifen) have been successfully applied. As many as 25% of tamoxifen-treated patients experience disease relapse within 5 years upon completion of chemotherapy. In such cases, the ER-independent oestrogen actions provide a plausible explanation for the resistance, as well as expands the existing horizon of available drug targets. ER-independent oestrogen signalling occurs via one of the following pathways: signalling through membrane receptors, oxidative catabolism giving rise to genotoxic metabolites, effects on mitochondria and redox balance, and induction of inflammatory cytokines. The current review focuses on the non-classical oestrogen signalling, its role in cancer, and its clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Okoh V, Deoraj A, Roy D (2011) Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta - Rev Cancer 1815:115–133

    Article  CAS  Google Scholar 

  2. Maran A, Zhang M, Kennedy AM, Turner RT (2003) ER-independent actions of estrogen and estrogen metabolitesin bone cells. J Musculoskel Neuron Interact 3:367–369

    CAS  Google Scholar 

  3. Simoncini T, Hafezi-Moghadam A, Brazil DP et al (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407:538–541. https://doi.org/10.1038/35035131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haynes MP, Sinha D, Russell KS et al (2000) Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 87:677–682. https://doi.org/10.1161/01.res.87.8.677

    Article  CAS  PubMed  Google Scholar 

  5. Levin ER (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 19:1951–1959

    Article  CAS  PubMed  Google Scholar 

  6. Cui J, Shen Y, Li R (2013) Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 19:197–209. https://doi.org/10.1016/J.MOLMED.2012.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roy D, Cai Q, Felty Q, Narayan S (2007) Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage, and estrogen-dependent cancers. J. Toxicol. Environ Heal - Part B Crit Rev 10:235–257

    CAS  Google Scholar 

  8. Iorga A, Cunningham CM, Moazeni S et al (2017) The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ 8:33. https://doi.org/10.1186/s13293-017-0152-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aryan L, Younessi D, Zargari M, et al (2020) The Role of Estrogen Receptors in Cardiovascular Disease. Int. J. Mol. Sci. 21

  10. Kendall B, Eston R (2002) Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med 32:103–123. https://doi.org/10.2165/00007256-200232020-00003

    Article  PubMed  Google Scholar 

  11. Azad P, Villafuerte FC, Bermudez D et al (2021) Protective role of estrogen against excessive erythrocytosis in Monge’s disease. Exp Mol Med 53:125–135. https://doi.org/10.1038/s12276-020-00550-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsai E-M, Wang S-C, Lee J-N, Hung M-C (2001) Akt Activation by Estrogen in Estrogen Receptor-negative Breast Cancer Cells

  13. Luo H, Yang G, Yu T et al (2014) GPER-mediated proliferation and estradiol production in breast cancer-associated fibroblasts. Endocr Relat Cancer 21:355–369. https://doi.org/10.1530/ERC-13-0237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Filardo EJ, Quinn JA, Bland KI, Frackelton ARJ (2000) Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14:1649–1660. https://doi.org/10.1210/mend.14.10.0532

    Article  CAS  PubMed  Google Scholar 

  15. De Marco P, Cirillo F, Vivacqua A, et al (2015) Novel Aspects Concerning the Functional Cross-Talk between the Insulin/IGF-I System and Estrogen Signaling in Cancer Cells . Front. Endocrinol. 6

  16. Zhu P, Liao L-Y, Zhao T-T et al (2017) GPER/ERK&AKT/NF-κB pathway is involved in cadmium-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells. Mol Cell Endocrinol 442:68–80. https://doi.org/10.1016/j.mce.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  17. Purohit A, Woo LWL, Potter BVL (2011) Steroid sulfatase: a pivotal player in estrogen synthesis and metabolism. Mol Cell Endocrinol 340:154–160. https://doi.org/10.1016/j.mce.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  18. Li KM, Todorovic R, Devanesan P et al (2004) Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo. Carcinogenesis 25:289–297. https://doi.org/10.1093/carcin/bgg191

    Article  CAS  PubMed  Google Scholar 

  19. Lavigne JA, Goodman JE, Fonong T, et al (2001) The Effects of Catechol-O-Methyltransferase Inhibition on Estrogen Metabolite and Oxidative DNA Damage Levels in Estradiol-treated MCF-7 Cells 1

  20. Cavalieri E, Chakravarti D, Guttenplan J et al (2006) Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta - Rev Cancer 1766:63–78

    Article  CAS  Google Scholar 

  21. Parida S, Sharma D (2019) The microbiome-estrogen connection and breast cancer risk. Cells 8:1642. https://doi.org/10.3390/CELLS8121642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xuan C, Shamonki JM, Chung A et al (2014) Microbial dysbiosis is associated with human breast cancer. PLoS One 9:e83744. https://doi.org/10.1371/journal.pone.0083744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu AH, Tseng C, Vigen C et al (2020) Gut microbiome associations with breast cancer risk factors and tumor characteristics: a pilot study. Breast Cancer Res Treat 182:451–463. https://doi.org/10.1007/s10549-020-05702-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kong LY, Szaniszlo P, Albrecht T, Liehr JG (2000) Frequency and molecular analysis of hprt mutations induced by estradiol in Chinese hamster V79 cells. Int J Oncol 17:1141–1149. https://doi.org/10.3892/ijo.17.6.1141

    Article  CAS  PubMed  Google Scholar 

  25. Fernandez SV, Russo IH, Russo J (2006) Estradiol and its metabolites 4-hydroxyestradiol and 2-hydroxyestradiol induce mutations in human breast epithelial cells. Int J cancer 118:1862–1868. https://doi.org/10.1002/IJC.21590

    Article  CAS  PubMed  Google Scholar 

  26. Russo J, Fernandez SV, Russo PA et al (2006) 17-Beta-estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEB J 20:1622–1634. https://doi.org/10.1096/FJ.05-5399COM

    Article  CAS  PubMed  Google Scholar 

  27. Yue W, Yager JD, Wang JP et al (2013) Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroids 78:161–170

    Article  CAS  PubMed  Google Scholar 

  28. Yue W, Wang JP, Li Y et al (2010) Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms. Int J Cancer 127:1748–1757. https://doi.org/10.1002/ijc.25207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rebbeck TR, Kauff ND, Domchek SM (2009) Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst 101:80–87. https://doi.org/10.1093/jnci/djn442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eisen A, Lubinski J, Klijn J et al (2005) Breast cancer risk following bilateral oophorectomy in BRCA1 and BRCA2 mutation carriers: an international case-control study. J Clin Oncol 23:7491–7496. https://doi.org/10.1200/JCO.2004.00.7138

    Article  PubMed  Google Scholar 

  31. Lakhani SR, Van De Vijver MJ, Jacquemier J et al (2002) The pathology of familial breast cancer: Predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20:2310–2318. https://doi.org/10.1200/JCO.2002.09.023

    Article  CAS  PubMed  Google Scholar 

  32. Banerjee S, Saxena N, Sengupta K, Banerjee SK (2003) 17alpha-estradiol-induced VEGF-A expression in rat pituitary tumor cells is mediated through ER independent but PI3K-Akt dependent signaling pathway. Biochem Biophys Res Commun 300:209–215. https://doi.org/10.1016/s0006-291x(02)02830-9

    Article  CAS  PubMed  Google Scholar 

  33. Sasaki M, Tanaka Y, Kaneuchi M, et al (2003) CYP1B1 Gene Polymorphisms Have Higher Risk for Endometrial Cancer, and Positive Correlations with Estrogen Receptor and Estrogen Receptor Expressions

  34. Okoh VO, Felty Q, Parkash J et al (2013) Reactive Oxygen Species via Redox Signaling to PI3K/AKT Pathway Contribute to the Malignant Growth of 4-Hydroxy Estradiol-Transformed Mammary Epithelial Cells. PLoS One. https://doi.org/10.1371/journal.pone.0054206

    Article  PubMed  PubMed Central  Google Scholar 

  35. Russo J, Lareef MH, Balogh G et al (2003) Estrogen and its metabolites are carcinogenic agents in human breast epithelial cells. J Steroid Biochem Mol Biol 87:1–25

    Article  CAS  PubMed  Google Scholar 

  36. Zheng W, Xie D-W, Jin F, et al (2000) Genetic Polymorphism of Cytochrome P450–1B1 and Risk of Breast Cancer 1

  37. Lottering ML, Haag M, Seegers JC (1992) Effects of 17 beta-estradiol metabolites on cell cycle events in MCF-7 cells. Cancer Res 52:5926–5932

    CAS  PubMed  Google Scholar 

  38. Dubey RK, Jackson EK, Keller PJ et al (2001) Estradiol metabolites inhibit endothelin synthesis by an estrogen receptor-independent mechanism. Hypertension 37(2):640–644

    Article  CAS  PubMed  Google Scholar 

  39. Maran A, Zhang M, Kennedy AM et al (2002) 2-methoxyestradiol induces interferon gene expression and apoptosis in osteosarcoma cells. Bone 30:393–398. https://doi.org/10.1016/S8756-3282(01)00681-0

    Article  CAS  PubMed  Google Scholar 

  40. Benedikt MB, Mahlum EW, Shogren KL et al (2010) 2-Methoxyestradiol-mediated anti-tumor effect increases osteoprotegrin expression in osteosarcoma cells. J Cell Biochem 109:950–956. https://doi.org/10.1002/JCB.22473

    Article  CAS  PubMed  Google Scholar 

  41. Maran A, Shogren KL, Benedikt M et al (2008) 2-methoxyestradiol-induced cell death in osteosarcoma cells is preceded by cell cycle arrest. J Cell Biochem 104:1937–1945. https://doi.org/10.1002/JCB.21758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wimbauer F, Yang C, Shogren KL et al (2012) Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells. BMC Cancer 12:1–10. https://doi.org/10.1186/1471-2407-12-93/TABLES/1

    Article  Google Scholar 

  43. Przychodzen P, Wyszkowska R, Gorzynik-Debicka M et al (2019) Anticancer potential of oleuropein, the polyphenol of olive oil, with 2-methoxyestradiol, separately or in combination, in human osteosarcoma cells. Anticancer Res 39:1243–1251. https://doi.org/10.21873/ANTICANRES.13234

    Article  CAS  PubMed  Google Scholar 

  44. Tang X, Tao F, Xiang W et al (2020) Anticancer effects and the mechanism underlying 2-methoxyestradiol in human osteosarcoma in vitro and in vivo. Oncol Lett 20:1. https://doi.org/10.3892/OL.2020.11925/HTML

    Article  Google Scholar 

  45. Chauhan D, Catley L, Hideshima T et al (2002) 2-Methoxyestradiol overcomes drug resistance in multiple myeloma cells. Blood 100:2187–2194. https://doi.org/10.1182/BLOOD-2002-02-0376

    Article  CAS  PubMed  Google Scholar 

  46. Dubey RK, Imthurn B, Jackson EK (2007) 2-Methoxyestradiol: a potential treatment for multiple proliferative disorders. Endocrinology 148:4125–4127. https://doi.org/10.1210/EN.2007-0514

    Article  CAS  PubMed  Google Scholar 

  47. Batth IS, Huang SB, Villarreal M et al (2021) Evidence for 2-methoxyestradiol-mediated inhibition of receptor tyrosine kinase RON in the management of prostate cancer. Int J Mol Sci. https://doi.org/10.3390/IJMS22041852

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Huang H, Xu Z, Zhan R (2010) 2-Methoxyestradiol blocks cell-cycle progression at the G2/M phase and induces apoptosis in human acute T lymphoblastic leukemia CEM cells. Acta Biochim Biophys Sin (Shanghai) 42:615–622. https://doi.org/10.1093/abbs/gmq065

    Article  CAS  PubMed  Google Scholar 

  49. Pal P, Hales K, Hales DB (2020) The pro-apoptotic actions of 2-methoxyestradiol against ovarian cancer involve catalytic activation of PKCδ signaling. Oncotarget 11:3646. https://doi.org/10.18632/ONCOTARGET.27760

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sawicka E, Saczko J, Roik J et al (2020) Effect of Interaction between 17β-Estradiol, 2-Methoxyestradiol and 16α-Hydroxyestrone with Chromium (VI) on Ovary Cancer Line SKOV-3: Preliminary Study. Mol 25:5214. https://doi.org/10.3390/MOLECULES25215214

    Article  CAS  Google Scholar 

  51. Rincón-Rodriguez R, Mena D, Mena J et al (2019) F-Spondin Is the Signal by Which 2-Methoxyestradiol Induces Apoptosis in the Endometrial Cancer Cell Line Ishikawa. Int J Mol Sci 20:3850. https://doi.org/10.3390/IJMS20163850

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ghosh R, Ganapathy M, Alworth WL et al (2009) Combination of 2-methoxyestradiol (2-ME2) and eugenol for apoptosis induction synergistically in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 113:25–35. https://doi.org/10.1016/J.JSBMB.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  53. Sharma N, Raut PW, Baruah MM, Sharma A (2021) Combination of quercetin and 2-methoxyestradiol inhibits epithelial–mesenchymal transition in PC-3 cell line via Wnt signaling pathway. Futur Sci OA. https://doi.org/10.2144/fsoa-2021-0028

    Article  Google Scholar 

  54. Zhang S, Yu H, Li J et al (2022) 2-Methoxyestradiol combined with ascorbic acid facilitates the apoptosis of chronic myeloid leukemia cells via the microRNA-223/Fms-like tyrosine kinase 3/phosphatidylinositol-3 kinase/protein kinase B axis. Bioengineered 13:3470–3485. https://doi.org/10.1080/21655979.2021.2024327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Musial C, Knap N, Zaucha R et al (2022) Induction of 2-hydroxycatecholestrogens O-methylation: a missing puzzle piece in diagnostics and treatment of lung cancer. Redox Biol 55:102395. https://doi.org/10.1016/J.REDOX.2022.102395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cavalieri E, Rogan E, Chakravarti D (2004) The Role of Endogenous Catechol Quinones in the Initiation of Cancer and Neurodegenerative Diseases. https://doi.org/10.1016/S0076-6879(04)82017-2

  57. Stewart MD, Zelin E, Dhall A et al (2018) BARD1 is necessary for ubiquitylation of nucleosomal histone H2A and for transcriptional regulation of estrogen metabolism genes. Proc Natl Acad Sci U S A 115:1316–1321. https://doi.org/10.1073/PNAS.1715467115/SUPPL_FILE/PNAS.1715467115.SAPP.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roy D, Liehr JG (1999) Estrogen DNA damage and mutations. Mutation Res/Fund Mol Mech Mutagen. https://doi.org/10.1016/S0027-5107(99)00012-3

    Article  Google Scholar 

  59. Maiti S, Nazmeen A (2019) Impaired redox regulation of estrogen metabolizing proteins is important determinant of human breast cancers. Cancer Cell Int 19:1–13. https://doi.org/10.1186/S12935-019-0826-X/FIGURES/5

    Article  Google Scholar 

  60. Na HK, Park SA, Kim EH et al (2009) 4-hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of IkappaB kinase: potential role of reactive oxygen species. Cancer Res 69:2416–2424. https://doi.org/10.1158/0008-5472.CAN-08-2177

    Article  CAS  PubMed  Google Scholar 

  61. Starek-Świechowicz B, Budziszewska B, Starek A (2021) Endogenous estrogens—breast cancer and chemoprevention. Pharmacol Reports 73:1497–1512. https://doi.org/10.1007/S43440-021-00317-0/FIGURES/3

    Article  Google Scholar 

  62. Cavalieri EL, Stack DE, Devanesan PD et al (1997) Molecular origin of cancer: Catechol estrogen-3 4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.94.20.10937

    Article  PubMed  PubMed Central  Google Scholar 

  63. Faria CC, Peixoto MS, Carvalho DP, Fortunato RS (2019) The emerging role of estrogens in thyroid redox homeostasis and carcinogenesis. Oxid Med Cell Longev 2019:2514312. https://doi.org/10.1155/2019/2514312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fortunato RS, Braga WMO, Ortenzi VH et al (2013) Sexual dimorphism of thyroid reactive oxygen species production due to higher NADPH Oxidase 4 expression in female thyroid glands. Thyroid 23:111–119. https://doi.org/10.1089/THY.2012.0142

    Article  CAS  PubMed  Google Scholar 

  65. Zahid M, Goldner W, Beseler CL et al (2013) Unbalanced estrogen metabolism in thyroid cancer. Int J cancer 133:2642–2649. https://doi.org/10.1002/ijc.28275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sastre-Serra J, Valle A, Company MM et al (2010) Estrogen down-regulates uncoupling proteins and increases oxidative stress in breast cancer. Free Radic Biol Med 48:506–512. https://doi.org/10.1016/j.freeradbiomed.2009.11.025

    Article  CAS  PubMed  Google Scholar 

  67. Felty Q, Roy D (2005) Mitochondrial signals to nucleus regulate estrogen-induced cell growth. Med Hypotheses 64:133–141. https://doi.org/10.1016/j.mehy.2003.12.056

    Article  CAS  PubMed  Google Scholar 

  68. Felty Q, Singh KP, Roy D (2005) Estrogen-induced G1/S transition of G0-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene 24:4883–4893. https://doi.org/10.1038/sj.onc.1208667

    Article  CAS  PubMed  Google Scholar 

  69. Skibińska I, Jendraszak M, Borysiak K et al (2016) 17β-estradiol and xenoestrogens reveal synergistic effect on mitochondria of human sperm. Ginekol Pol 87:360–366. https://doi.org/10.5603/GP.2016.0005

    Article  PubMed  Google Scholar 

  70. Borrás C, Gambini J, López-Grueso R et al (2010) Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim Biophys Acta 1802:205–211. https://doi.org/10.1016/j.bbadis.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  71. Torres MJ, Kew KA, Ryan TE et al (2018) 17β-Estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. Cell Metab 27:167-179.e7. https://doi.org/10.1016/j.cmet.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  72. Bajbouj K, Shafarin J, Taneera J, Hamad M (2020) Estrogen signaling induces mitochondrial dysfunction-associated autophagy and senescence in breast cancer cells. Biology (Basel). https://doi.org/10.3390/biology9040068

    Article  PubMed  Google Scholar 

  73. Sasaki Y, Ikeda Y, Uchikado Y et al (2021) Estrogen plays a crucial role in rab9-dependent mitochondrial autophagy delaying arterial senescence. J Am Heart Assoc 10:e019310. https://doi.org/10.1161/JAHA.120.019310

    Article  PubMed  PubMed Central  Google Scholar 

  74. Duan J, Chen H, Xu D et al (2021) 17β-estradiol improves the developmental ability, inhibits reactive oxygen species levels and apoptosis of porcine oocytes by regulating autophagy events. J Steroid Biochem Mol Biol 209:105826. https://doi.org/10.1016/j.jsbmb.2021.105826

    Article  CAS  PubMed  Google Scholar 

  75. Gorbenko NI, Borikov AY, Ivanova OV et al (2014) Effect of 17β-estradiol on bioenergetic processes in the heart mitochondria of ovariectomized rats with insulin resistance. Biomed Khim 60:576–580. https://doi.org/10.18097/pbmc20146005576

    Article  CAS  PubMed  Google Scholar 

  76. Kim S, Lee J-Y, Shin SG et al (2021) ESRRA (estrogen related receptor alpha) is a critical regulator of intestinal homeostasis through activation of autophagic flux via gut microbiota. Autophagy 17:2856–2875. https://doi.org/10.1080/15548627.2020.1847460

    Article  CAS  PubMed  Google Scholar 

  77. Laws MJ, Kannan A, Pawar S et al (2014) Dysregulated estrogen receptor signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis in mice. PLoS Genet 10:e1004230. https://doi.org/10.1371/journal.pgen.1004230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kasoha M, Dernektsi C, Seibold A et al (2020) Crosstalk of estrogen receptors and Wnt/β-catenin signaling in endometrial cancer. J Cancer Res Clin Oncol 146:315–327. https://doi.org/10.1007/s00432-019-03114-8

    Article  CAS  PubMed  Google Scholar 

  79. Tutzauer J, Gonzalez de Valdivia E, Swärd K et al (2021) Ligand-independent g protein-coupled estrogen receptor/g protein-coupled receptor 30 activity: lack of receptor-dependent effects of G-1 and 17β-estradiol. Mol Pharmacol 100:271–282. https://doi.org/10.1124/molpharm.121.000259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Segura-Bautista D, Olivares A, Casas-González P et al (2020) GPR30 expression and function in breast cancer cells are induced through a cis-acting element targeted by ETS factors. Oncol Rep 43:1669–1682. https://doi.org/10.3892/or.2020.7540

    Article  CAS  PubMed  Google Scholar 

  81. Jiang Q-F, Wu T-T, Yang J-Y et al (2013) 17β-Estradiol promotes the invasion and migration of nuclear estrogen receptor-negative breast cancer cells through cross-talk between GPER1 and CXCR1. J Steroid Biochem Mol Biol 138:314–324. https://doi.org/10.1016/j.jsbmb.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  82. Filardo EJ, Graeber CT, Quinn JA et al (2006) Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin cancer Res an Off J Am Assoc Cancer Res 12:6359–6366. https://doi.org/10.1158/1078-0432.CCR-06-0860

    Article  CAS  Google Scholar 

  83. Ignatov T, Weißenborn C, Poehlmann A et al (2013) GPER-1 expression decreases during breast cancer tumorigenesis. Cancer Invest 31:309–315. https://doi.org/10.3109/07357907.2013.789901

    Article  CAS  PubMed  Google Scholar 

  84. Marjon NA, Hu C, Hathaway HJ, Prossnitz ER (2014) G Protein-coupled estrogen receptor regulates mammary tumorigenesis and metastasis. Mol Cancer Res 12:1644–1654. https://doi.org/10.1158/1541-7786.MCR-14-0128-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ulhaq ZS, Soraya GV, Milliana A, Tse WKF (2021) Association between GPER gene polymorphisms and GPER expression levels with cancer predisposition and progression. Heliyon 7:e06428. https://doi.org/10.1016/j.heliyon.2021.e06428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tutzauer J, Sjöström M, Bendahl P-O et al (2020) Plasma membrane expression of G protein-coupled estrogen receptor (GPER)/G protein-coupled receptor 30 (GPR30) is associated with worse outcome in metachronous contralateral breast cancer. PLoS One 15:e0231786. https://doi.org/10.1371/journal.pone.0231786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. De Marco P, Romeo E, Vivacqua A et al (2014) GPER1 is regulated by insulin in cancer cells and cancer-associated fibroblasts. Endocr Relat Cancer 21:739–753. https://doi.org/10.1530/ERC-14-0245

    Article  CAS  PubMed  Google Scholar 

  88. DeLeon C, Wang DQ-H, Arnatt CK (2020) G Protein-Coupled Estrogen Receptor, GPER1, Offers a Novel Target for the Treatment of Digestive Diseases . Front. Endocrinol. 11

  89. Prossnitz ER, Arterburn JB (2015) International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 67:505–540. https://doi.org/10.1124/pr.114.009712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Savoia P, Raina G, Camillo L et al (2018) Anti-oxidative effects of 17 β-estradiol and genistein in human skin fibroblasts and keratinocytes. J Dermatol Sci 92:62–77. https://doi.org/10.1016/j.jdermsci.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  91. Chen Z, Xuan Q, Zhao D et al (2020) Roles of G protein-coupled receptor 30 in the effects of genistein on apoptosis and cell cycle in human thyroid squamous cells SW579. Wei Sheng Yan Jiu 49:780–784. https://doi.org/10.19813/j.cnki.weishengyanjiu.2020.05.015

    Article  CAS  PubMed  Google Scholar 

  92. Adeyemi SA, Choonara YE, Kumar P et al (2019) Folate-decorated, endostatin-loaded, nanoparticles for anti-proliferative chemotherapy in esophaegeal squamous cell carcinoma. Biomed Pharmacother 119:109450. https://doi.org/10.1016/j.biopha.2019.109450

    Article  CAS  PubMed  Google Scholar 

  93. Schmidt-Wolf R, Zissel G (2020) Interaction Between CCL18 and GPR30 Differs from the Interaction Between Estradiol and GPR30. Anticancer Res 40:3097–3108. https://doi.org/10.21873/anticanres.14291

    Article  CAS  PubMed  Google Scholar 

  94. Bai L-Y, Weng J-R, Hu J-L et al (2013) G15, a GPR30 antagonist, induces apoptosis and autophagy in human oral squamous carcinoma cells. Chem Biol Interact 206:375–384. https://doi.org/10.1016/j.cbi.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  95. Rudelius M, Rauert-Wunderlich H, Hartmann E et al (2015) The G protein-coupled estrogen receptor 1 (GPER-1) contributes to the proliferation and survival of mantle cell lymphoma cells. Haematologica 100:e458–e461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yin G, Zeng B, Peng Z et al (2018) Synthesis and application of 131I-fulvestrant as a targeted radiation drug for endocrine therapy in human breast cancer. Oncol Rep 39:1215–1226. https://doi.org/10.3892/or.2018.6212

    Article  CAS  PubMed  Google Scholar 

  97. Broughton BRS, Miller AA, Sobey CG (2010) Endothelium-dependent relaxation by G protein-coupled receptor 30 agonists in rat carotid arteries. Am J Physiol Heart Circ Physiol 298:H1055–H1061. https://doi.org/10.1152/ajpheart.00878.2009

    Article  CAS  PubMed  Google Scholar 

  98. Pratiwi RIA, Widyarti S, Sumitro SB (2023) Potential of Kesambi Active Compound (Schleichera oleosa) as Antagonist G-Protein Estrogen Receptor 1 (GPER1) by In Silico. J Exp Life Sci 13:43–51. https://doi.org/10.21776/ub.jels.2023.013.01.07

    Article  Google Scholar 

  99. Masuhara M, Tsukahara T, Tomita K et al (2016) A relation between osteoclastogenesis inhibition and membrane-type estrogen receptor GPR30. Biochem Biophys Reports 8:389–394. https://doi.org/10.1016/j.bbrep.2016.10.013

    Article  Google Scholar 

  100. Xu KJ, Loganathan N, Belsham DD (2022) Bisphenol S induces Agrp expression through GPER1 activation and alters transcription factor expression in immortalized hypothalamic neurons: A mechanism distinct from BPA-induced upregulation. Mol Cell Endocrinol 552:111630. https://doi.org/10.1016/j.mce.2022.111630

    Article  CAS  PubMed  Google Scholar 

  101. Segovia-Mendoza M, Mirzaei E, Prado-Garcia H, et al (2022) The Interplay of GPER1 with 17-Aminoestrogens in the Regulation of the Proliferation of Cervical and Breast Cancer Cells: A Pharmacological Approach. Int. J. Environ. Res. Public Health 19

  102. Khan SU, Ahemad N, Chuah L-H et al (2019) Sequential ligand- and structure-based virtual screening approach for the identification of potential G protein-coupled estrogen receptor-1 (GPER-1) modulators. RSC Adv 9:2525–2538. https://doi.org/10.1039/C8RA09318K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang Y, Jiang T, Ni S et al (2022) Effects of Estrogen on Proliferation and Apoptosis of Osteoblasts through Regulating GPER/AKT Pathway. Cell Mol Biol 68:124–129. https://doi.org/10.14715/cmb/2022.68.6.20

    Article  PubMed  Google Scholar 

  104. Abancens M, Harvey BJ, McBryan J (2022) GPER Agonist G1 Prevents Wnt-Induced JUN Upregulation in HT29 Colorectal Cancer Cells. Int J Mol Sci. https://doi.org/10.3390/ijms232012581

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang X-F, Hu C, Mo S-W et al (2022) GPR30 Activation promotes the progression of gastric cancer and plays a significant role in the anti-GC effect of Huaier. J Oncol 2022:2410530. https://doi.org/10.1155/2022/2410530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu E, Xia X, Jiang C, et al (2020) GPER1 Silencing Suppresses the Proliferation, Migration, and Invasion of Gastric Cancer Cells by Inhibiting PI3K/AKT–Mediated EMT . Front Cell Dev Biol. 8

  107. Kurt Hakan A, Çelik A, Kelleci Mehmet B (2015) Oxidative/antioxidative enzyme-mediated antiproliferative and proapoptotic effects of the GPER1 agonist G-1 on lung cancer cells. Oncol Lett 10:3177–3182. https://doi.org/10.3892/ol.2015.3711

    Article  CAS  Google Scholar 

  108. Li Z-H, Liu C, Liu Q-H et al (2022) Cytoplasmic expression of G protein-coupled estrogen receptor 1 correlates with poor postoperative prognosis in non-small cell lung cancer. J Thorac Dis 14:1466–1477. https://doi.org/10.21037/jtd-22-29

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bertoni APS, de Manfroi P, A Tomedi J et al (2021) The gene expression of GPER1 is low in fresh samples of papillary thyroid carcinoma (PTC), and in silico analysis. Mol Cell Endocrinol 535:111397. https://doi.org/10.1016/j.mce.2021.111397

    Article  CAS  PubMed  Google Scholar 

  110. Ino Y, Akimoto T, Takasawa A et al (2020) Elevated expression of G protein-coupled receptor 30 (GPR30) is associated with poor prognosis in patients with uterine cervical adenocarcinoma. Histol Histopathol 35:351–359. https://doi.org/10.14670/HH-18-157

    Article  CAS  PubMed  Google Scholar 

  111. Zhang R, Zong J, Peng Y et al (2021) GPR30 knockdown weakens the capacity of CAF in promoting prostate cancer cell invasion via reducing macrophage infiltration and M2 polarization. J Cell Biochem. https://doi.org/10.1002/jcb.29938

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hirtz A, Bailly Y, Rech F, et al (2022) Molecular Characterization of the Dual Effect of the GPER Agonist G-1 in Glioblastoma. Int. J. Mol. Sci. 23

  113. Li Z, Chen L, Chu H et al (2022) Estrogen alleviates hepatocyte necroptosis depending on GPER in hepatic ischemia reperfusion injury. J Physiol Biochem 78:125–137. https://doi.org/10.1007/s13105-021-00846-5

    Article  CAS  PubMed  Google Scholar 

  114. Bopassa JC, Eghbali M, Toro L, Stefani E (2010) A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 298:H16-23. https://doi.org/10.1152/ajpheart.00588.2009

    Article  CAS  PubMed  Google Scholar 

  115. Sbert-Roig M, Bauzá-Thorbrügge M, Galmés-Pascual BM et al (2016) GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function. Mol Cell Endocrinol 420:116–124. https://doi.org/10.1016/j.mce.2015.11.027

    Article  CAS  PubMed  Google Scholar 

  116. Vásquez-Reyes S, Vargas-Castillo A, Noriega LG et al (2022) Genistein stimulation of white adipose tissue thermogenesis is partially dependent on GPR30 in mice. Mol Nutr Food Res 66:e2100838. https://doi.org/10.1002/mnfr.202100838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Torres MJ, Ryan TE, Lin C-T et al (2018) Impact of 17β-estradiol on complex I kinetics and H(2)O(2) production in liver and skeletal muscle mitochondria. J Biol Chem 293:16889–16898. https://doi.org/10.1074/jbc.RA118.005148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pecar G, Liu S, Hooda J et al (2023) RET signaling in breast cancer therapeutic resistance and metastasis. Breast Cancer Res 25:26. https://doi.org/10.1186/s13058-023-01622-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Elbagoury RM, Shenouda MA, Elnakib HE et al (2023) Design, synthesis, and metabolite identification of Tamoxifen esterase-activatable prodrugs. Bioorg Chem 131:106303. https://doi.org/10.1016/j.bioorg.2022.106303

    Article  CAS  PubMed  Google Scholar 

  120. Ralf B, T. HM, Gabriel F-C, et al (2022) Repurposing tamoxifen as potential host-directed therapeutic for tuberculosis. MBio 14:e03024-e3122. https://doi.org/10.1128/mbio.03024-22

    Article  CAS  Google Scholar 

  121. El-Zein R, Thaiparambil J, Abdel-Rahman SZ (2020) 2-methoxyestradiol sensitizes breast cancer cells to taxanes by targeting centrosomes. Oncotarget 11:4479. https://doi.org/10.18632/ONCOTARGET.27810

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gorska-Ponikowska M, Kuban-Jankowska A, Eisler SA et al (2018) 2-Methoxyestradiol affects mitochondrial biogenesis pathway and succinate dehydrogenase complex flavoprotein subunit a in osteosarcoma cancer cells. Cancer Genomics Proteomics 15:73–89. https://doi.org/10.21873/cgp.20067

    Article  CAS  PubMed  Google Scholar 

  123. Sweeney C, Liu G, Yiannoutsos C et al (2005) A phase II multicenter, randomized, double-blind, safety trial assessing the pharmacokinetics, pharmacodynamics, and efficacy of oral 2-methoxyestradiol capsules in hormone-refractory prostate cancer. Clin Cancer Res 11:6625–6633. https://doi.org/10.1158/1078-0432.CCR-05-0440

    Article  CAS  PubMed  Google Scholar 

  124. Hua W, Huang X, Li J et al (2022) 2-methoxyestradiol inhibits melanoma cell growth by activating adaptive immunity. Immunopharmacol Immunotoxicol. https://doi.org/10.1080/0892397320222062380

    Article  PubMed  Google Scholar 

  125. Zheng S, Ni J, Li Y et al (2021) 2-Methoxyestradiol synergizes with Erlotinib to suppress hepatocellular carcinoma by disrupting the PLAGL2-EGFR-HIF-1/2α signaling loop. Pharmacol Res 169:105685. https://doi.org/10.1016/J.PHRS.2021.105685

    Article  CAS  PubMed  Google Scholar 

  126. Alhakamy NA, Ahmed OAA, Fahmy UA, Md S (2021) Development and In Vitro Evaluation of 2-Methoxyestradiol Loaded Polymeric Micelles for Enhancing Anticancer Activities in Prostate Cancer. Polym 13:884. https://doi.org/10.3390/POLYM13060884

    Article  CAS  Google Scholar 

  127. Awan ZA, AlGhamdi SA, Alhakamy NA et al (2022) Optimized 2-methoxyestradiol invasomes fortified with apamin: a promising approach for suppression of A549 lung cancer cells. Drug Delivery 29:1536–1548. https://doi.org/10.1080/10717544.2022.2072412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Borahay MA, Vincent KL, Motamedi M et al (2020) (2020) Liposomal 2-methoxyestradiol nanoparticles for treatment of uterine leiomyoma in a patient-derived xenograft mouse model. Reprod Sci 281(28):271–277. https://doi.org/10.1007/S43032-020-00248-W

    Article  Google Scholar 

  129. Xu Z, Zhao D, Zheng X et al (2022) Low concentrations of 17β-estradiol exacerbate tamoxifen resistance in breast cancer treatment through membrane estrogen receptor-mediated signaling pathways. Environ Toxicol 37:514–526. https://doi.org/10.1002/tox.23417

    Article  CAS  PubMed  Google Scholar 

  130. Tsai C-L, Lin C-Y, Chao A et al (2021) GPR30 Activation by 17β-Estradiol Promotes p62 Phosphorylation and Increases Estrogen Receptor α Protein Expression by Inducing Its Release from a Complex Formed with KEAP1. J Pers Med. https://doi.org/10.3390/jpm11090906

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lei B, Xu L, Zhang X et al (2021) The proliferation effects of fluoxetine and amitriptyline on human breast cancer cells and the underlying molecular mechanisms. Environ Toxicol Pharmacol 83:103586. https://doi.org/10.1016/j.etap.2021.103586

    Article  CAS  PubMed  Google Scholar 

  132. Zhou L, Yu T, Yang F et al (2021) G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Mantle Cell Lymphoma Growth in Preclinical Models. Front Oncol 11:668617. https://doi.org/10.3389/fonc.2021.668617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang X, Xu Z, Sun J et al (2020) Cisplatin resistance in gastric cancer cells is involved with GPR30-mediated epithelial-mesenchymal transition. J Cell Mol Med 24:3625–3633. https://doi.org/10.1111/jcmm.15055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang Y, Su G-F, Huang Z-X et al (2020) Cepharanthine hydrochloride induces mitophagy targeting GPR30 in hepatocellular carcinoma (HCC). Expert Opin Ther Targets 24:389–402. https://doi.org/10.1080/14728222.2020.1737013

    Article  CAS  PubMed  Google Scholar 

  135. Filardo EJ, Thomas P (2012) Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology. Endocrinology 153:2953–2962. https://doi.org/10.1210/en.2012-1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ignatov A, Ignatov T, Roessner A et al (2010) Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res Treat 123:87–96. https://doi.org/10.1007/s10549-009-0624-6

    Article  CAS  PubMed  Google Scholar 

  137. Xu S, Yu S, Dong D, Lee LTO (2019) G Protein-Coupled Estrogen Receptor: A Potential Therapeutic Target in Cancer. Front Endocrinol (Lausanne) 10:725. https://doi.org/10.3389/fendo.2019.00725

    Article  PubMed  Google Scholar 

  138. Girgert R, Emons G, Gründker C (2012) Inactivation of GPR30 reduces growth of triple-negative breast cancer cells: possible application in targeted therapy. Breast Cancer Res Treat 134:199–205. https://doi.org/10.1007/s10549-012-1968-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Cancer Institute (WIA)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Gopisetty.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinath, P., Oviya, R.P. & Gopisetty, G. Oestrogen receptor-independent actions of oestrogen in cancer. Mol Biol Rep 50, 9497–9509 (2023). https://doi.org/10.1007/s11033-023-08793-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08793-8

Keywords

Navigation