Skip to main content
Log in

Genomic profile of diabetic retinopathy in a north indian cohort

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

This article has been updated

Abstract

Background

Diabetic Retinopathy (DR) is one of the major microvascular complications of diabetes. Being a complex disease, it is important to delineate the genetic and environmental factors that influence the susceptibility to DR in a population. Therefore, the present study was designed to investigate the role of genetic and lifestyle risk factors associated with DR susceptibility in a North-Indian population.

Methods

A total of 848 subjects were enrolled, comprising of DR cases (n = 414) and healthy controls (n = 434). The Sequenom MassARRAY technology was used to perform target genome analysis of 111 SNPs across 57 candidate genes and 14 intergenic region SNPs that are involved in the metabolic pathways associated with type 2 diabetes (T2D) and DR. Allele, genotype and haplotype frequencies were determined and compared among cases and controls. Logistic regression models were used to determine genotype-phenotype and phenotype-phenotype correlations.

Results

The strongest association was observed with TCF7L2 rs12255372 T allele [p < 0.0001; odds ratio (OR) = 1.81 (1.44–2.27)] and rs11196205 C allele [p < 0.0008; OR = 1.62 (1.32–1.99)]. Genotype-phenotype and phenotype-phenotype correlations were found in the present study.

Conclusion

Our study provides strong evidence of association between the TCF7L2 variants and DR susceptibility.

Key points

  1. 1.

    Association of TCF7L2 rs12255372 and rs11196205 with Diabetic Retinopathy (DR).

  2. 2.

    Association of lifestyle risk factors with DR.

  3. 3.

    Genotype-Phenotype interactions among DR cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Online:

All relevant aggregated data are within the manuscript and its Supporting Information files. The individual level data are available upon request from the corresponding author (Email: ruhisikka@gmail.com) for researchers who meet the criteria for access to confidential data.

Change history

  • 25 October 2023

    The publication year of the 53rd reference is corrected from 2020 to 2021. The correct reference is “Raina P, Sikka R, Gupta H, Matharoo K, Bali SK, Singh V, Bhanwer AJS (2021) Association of eNOS and MCP-1 genetic variants with diabetic nephropathy in type 2 diabetes. Biochem Genet 59:966–996”

References

  1. International Diabetes Federation (2021) IDF diabetes Atalas. 10th edition, Brussels

  2. American Diabetes Association. 10. Microvascular complications and foot care: standards of medical care in diabetes-2018. Diabetes Care (2018) ; 41: S105- S118

  3. Tan TE, Wong TY (2023) Diabetic retinopathy: looking forward to 2030. Front Endocrinol (Lausanne) 13:1077669

    Article  PubMed  Google Scholar 

  4. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y, Wong IY, Ting DSW, Tan GSW, Jonas JB, Sabanayagam C, Wong TY, Cheng CY (2021) Global prevalence of Diabetic Retinopathy and Projection of Burden through 2045: systematic review and Meta-analysis. Ophthalmology 128(11):1580–1591

    Article  PubMed  Google Scholar 

  5. Wu L, Fernandez-Loaiza P, Sauma J, Hernandez-Bogantes E, Masis M (2013) Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes 4(6):290–294

    Article  PubMed  PubMed Central  Google Scholar 

  6. Raman R, Gella L, Srinivasan S, Sharma T (2016) Diabetic retinopathy: an epidemic at home and around the world. Indian J Ophthalmol 64:69–75

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cheloni R, Gandolfi SA, Signorelli C, Odone A (2019) Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ Open 9(3):e022188

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raman R, Ganesan S, Pal SS, Kulothungan V, Sharma T (2014) Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2. Br Med J Open Diabetes Res Care 2:1–8

    Google Scholar 

  9. Sunita M, Desai S, Vinay P, Moolani S, Rai N, Deepen S, Ashwini R, Manish S, Hemangi G, Abdal O, Kulkarni P, Chakravarti A, Uthra S, Raman R, Radhika S, Natarajan S, Kumaramanickavel G, McCarty C (2014) Aditya Jyot-Diabetic Retinopathy in Urban Mumbai Slums Study (AJ-DRUMSS): Study Design and Methodology-Report. Ophthalmic Epidemiol 21:51–60

    Article  PubMed  Google Scholar 

  10. Gadkari SS, Maskati QB, Nayak BK (2016) Prevalence of diabetic retinopathy in India: the All-India Opthalmological Society Diabetic Retinopathy Eye Screening Study 2014. Indian J Opthalmology 64:38–44

    Article  Google Scholar 

  11. Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R (2013) Pathophysiology of Diabetic Retinopathy. Int Sch Res Netw Ophthalmol 2013:1–13

    Google Scholar 

  12. Shin ES, Sorenson CM, Sheibani N (2013) Diabetes and retinal vascular dysfunction. J Opthalmic Vis Res 9:362–373

    Google Scholar 

  13. Rema M, Saravanan G, Deepa R, Mohan V (2002) Familial clustering of diabetic retinopathy in South indian type 2 diabetic patients. Diabet Med 19:910–916

    Article  CAS  PubMed  Google Scholar 

  14. Hietala K, Forsblom C, Summanen P, Groop PH (2008) Heritability of proliferative diabetic retinopathy. Diabetes 57:2176–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, Satko SG, Bowden DW, Duggirala R, Elston RC, Guo X, Hanson RL, Igo RP Jr, Ipp E, Kimmel PL, Knowler WC, Molineros J, Nelson RG, Pahl MV, Quade SR, Rasooly RS, Rotter JI, Saad MF, Scavini M, Schelling JR, Sedor JR, Shah VO, Zager PG, Abboud HE (2008) Family Investigation of Nephropathy and Diabetes Research Group. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Visual Sci 49:3839–3845

    Article  Google Scholar 

  16. Burdon KP, Fogarty RD, Shen W, Abhary S, Kaidonis G, Appukuttan B, Hewitt AW, Sharma S, Daniell M, Essex RW, Chang JH (2015) Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia 58:2288–2297

    Article  CAS  PubMed  Google Scholar 

  17. Looker CH, Nelson RG, Chew E, Klein R, Klein EK, Knowler WC, Hanson RL (2007) Genome-wide linkage analysis to identify loci for diabetic retinopathy. Dibetes 56:1160–1166

    Article  CAS  Google Scholar 

  18. Shtir C, Aldahmesh MA, Al-Dahmash S, Abboud E, Alkuraya H, Abouammoh MA, Nowailaty SR, Al-Thubaiti G, Naim EA, ALYounes B, Binhumaid FS, ALOtaibi AB, Altamimi AS, Alamer FH, Hashem M, Abouelhoda M, Monies D, Alkuraya FS (2016) Exome-based case–control association study using extreme phenotype design reveals novel candidates with protective effect in diabetic retinopathy. Hum Genet 135:193–200

    Article  CAS  PubMed  Google Scholar 

  19. Kuo JZ, Wong TY, Rotter JI (2014) Challenges in elucidating the genetics of diabetic retinopathy. J Am Med Association Ophthalmol 132:96–107

    CAS  Google Scholar 

  20. Balasubbu S, Sundaresan P, Rajendran A, Ramasamy K, Govindarajan G, Perumalsamy N, Hejtmancik JF (2010) Association analysis of nine candidate gene polymorphisms in indian patients with type 2 diabetic retinopathy. BMC Med Genet 11:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mishra B, Swaroop A, Kandpal RP (2016) Genetic components in diabetic retinopathy. Indian J Ophthalmol 64(1):55–61

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cheema BS, Sharma R, Bhansali A, Khullar M (2012) Endothelial nitric oxide synthase gene polymorphism and type 2 diabetic retinopathy among asian Indians. Acta Diabetol 49:481–488

    Article  CAS  PubMed  Google Scholar 

  23. Kaur N, Vanita V (2016) Association of aldose reductase gene (AKR1B1) polymorphism with diabetic retinopathy. Diabetes Res Clin Pract 121:41–48. https://doi.org/10.1016/j.diabres.2016.08.019Epub 2016 Sep 8. PMID: 27640118

    Article  CAS  PubMed  Google Scholar 

  24. Sikka R, Raina P, Matharoo K, Bandesh K, Bhatia R, Chakrabarti S, Bhanwer AJS (2014) TNF-α (g.-308 G > A) and ADIPOQ (g.+45 T > G) gene polymorphisms in type 2 diabetes and microvascular complications in the region of Punjab (North–West India). Curr Eye Res 39:1042–1051

    Article  CAS  PubMed  Google Scholar 

  25. Singh K, Kant S, Singh VK, Agrawal NK, Gupta SK, Singh K (2014) Toll-like receptor 4 polymorphisms and their haplotypes modulate the risk of developing diabetic retinopathy in type 2 diabetes patients. Mol Vis 20:704–713

    PubMed  PubMed Central  Google Scholar 

  26. Vanita V (2014) Association of RAGE (p.Gly82Ser) and MnSOD (p.Val16Ala) polymorphisms with diabetic retinopathy in T2DM patients from North India. Diabetes Res Clin Pract 104:155–162

    Article  CAS  PubMed  Google Scholar 

  27. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for 439 extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenome MassArray iPLEX platform. Curr Protocols Hum Genet 60:2121–21218

    Google Scholar 

  29. McLaren W, Gil L, Hunt SE et al (2016) The Ensembl variant effect predictor. Genome Biol 17:122

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hinrichs AS, Raney BJ, Speir ML, Rhead B, Casper J, Karolchik D, Kuhn RM, Rosenbloom KR, Zweig AS, Haussler D, Kent WJ (2016) UCSC Data integrator and variant annotation Integrator. Bioinformatics 32(9):1430–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lyssenko V (2008) The transcription factor 7-like 2 gene and increased risk of type 2 diabetes: an update. Curr Opin Clin Nutr Metab Care 11:385–392

    Article  CAS  PubMed  Google Scholar 

  32. Hansson O, Zhou Y, Renstrom E, Osmark P (2010) Molecular function of TCF7L2: consequences of TCF7L2 splicing for molecular function and risk for type 2 diabetes. Curr Diab Rep 10:444–451

    Article  CAS  PubMed  Google Scholar 

  33. Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K (2008) Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes 57:645–653

    Article  CAS  PubMed  Google Scholar 

  34. Wu K, Zhou K, Zhao M, Xiang L, Mei T, Xu W, Shang B, Liu X, Lai Y, Lin M, Luo J, Zhao L (2022) TCF7L2 promotes ER stress signaling in diabetic retinopathy. Exp Eye Res 221:109142

    Article  CAS  PubMed  Google Scholar 

  35. Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D’Amato C, Novelli G, Sangiuolo F, Spallone V, Borgiani P (2013) TCF7L2 gene polymorphisms and type 2 diabetes: association with diabetic retinopathy and cardiovascular autonomic neuropathy. Acta Diabetol 50:789–799

    Article  CAS  PubMed  Google Scholar 

  36. Ali S, Chopra R, Manvati S, Singh YP, Kaul N, Behura A, Mahajan A, Sehajpal P, Gupta S, Dhar MK, Chainy GB (2013) Replication of type 2 diabetes candidate genes variations in three geographically unrelated indian population groups. PLoS ONE 8:e58881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Velayutham K, Ramanathan B, Murugan J, Murugan A, Thavamani V, Gomathinayagam R Carriers of the TCF7L2 rs7903146, rs12255372 risk alleles in the South Tamil Nadu T2DM patients present with early incidence and insulin dependence. Indian J Endocrinol Metab 2019 Sep-Oct ;23(5):563–569

  38. Shokouhi S, Delpisheh A, Haghani K, Mahdizadeh M, Bakhtiyari S (2014) Association of rs7903146, rs12255372, and rs290487 polymorphisms in TCF7L2 gene with type 2 diabetes in an iranian kurdish ethnic group. Clin Lab 60(8):1269–1276

    CAS  PubMed  Google Scholar 

  39. Zhang Y, Meng N, Lv Z, Li H, Qu Y (2015) The gene polymorphisms of UCP 1 but not PPAR γ and TCF 7L2 are associated with diabetic retinopathy in chinese type 2 diabetes mellitus cases. Acta Ophthalmol 93(3):e223–e229

    Article  CAS  PubMed  Google Scholar 

  40. Helgason A, Pálsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir I, Benediktsson R (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39:218–225

    Article  CAS  PubMed  Google Scholar 

  41. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Kristinn P, Magnusson G, Walters B, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    Article  CAS  PubMed  Google Scholar 

  42. Jin T (2008) The WNT signalling pathway and diabetes mellitus. Diabetologia 51(10):1771–1780

    Article  CAS  PubMed  Google Scholar 

  43. Bhardwaj R, Kandori A, Marwah R, Vaidya P, Singh B, Dhiman P, Sharma A (2010) Prevalence, awareness, and control of hypertension in rural communities of Himachal Pradesh. J Assoc Physicians India 58:423–429

    PubMed  Google Scholar 

  44. Kaur N, Sidhu S (2012) Prevalence of obesity and hypertension in newly diagnosed type 2 diabetes Mellitus (T2DM) in patients of Amritsar. J Exerc Sci Physiotherapy 8:113–118

    Google Scholar 

  45. Matharoo K, Arora P, Bhanwer AJ Association of adiponectin (AdipoQ) and sulphonyl urea receptor (ABCC8) gene polymorphisms with type 2 diabetes in north indian population of Punjab. Gene 15;527(1): 228–234

  46. Liu L, Wu J, Yue S, Geng J, Lian J, Teng W, Huang D, Chen L (2015a) Incidence density and risk factors of Diabetic Retinopathy within type 2 diabetes: a five-year Cohort Study in China (Report 1). Int J Environ Res Public Health 12:7899–7909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. UK Prospective Diabetes Study Group (1998b) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317:703–713

    Article  PubMed Central  Google Scholar 

  48. Snow V, Weiss KB, Mottur-Pilson C (2003) The evidence base for tight blood pressure control in the management of type 2 diabetes mellitus. Ann Intern Med 138:587–592

    Article  PubMed  Google Scholar 

  49. ACCORD Study Group, ACCORD Eye Study Group, Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, Greven CM, Hubbard L, Esser BA, Lovato JF, Perdue LH, Goff DC, Jr, Cushman WC, Ginsberg HN, Elam MB, Genuth S, Gerstein HC, Schubart U, Fine LJ (2010) Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med 363:233–244

    Article  Google Scholar 

  50. Chew EY, Davis MD, Danis RP, Lovato JF, Perdue LH, Greven C, Genuth S, Goff DC, Leiter LA, Ismail-Beigi F, Ambrosius WT, Action to Control Cardiovascular Risk in Diabetes Eye Study Research Group (2014) The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: the action to control cardiovascular risk in diabetes (ACCORD) eye study. Ophthalmology 121:2443–2451

    Article  PubMed  Google Scholar 

  51. Rani PK, Raman R, Chandrakantan A, Pal SS, Perumal GM, Sharma T (2009) Risk factors for diabetic retinopathy in self-reported rural population with diabetes. J Postgrad Med 55:92–96

    Article  CAS  PubMed  Google Scholar 

  52. Pang C, Jia L, Jiang S, Liu W, Hou X, Zuo Y, Gu H, Bao Y, Wu Q, Xiang K, Gao X (2011) Determination of diabetic retinopathy prevalence and associated risk factors in chinese diabetic and pre-diabetic subjects: Shanghai diabetic complications study. Diab/Metab Res Rev 28:276–283

    Article  Google Scholar 

  53. Raina P, Sikka R, Gupta H, Matharoo K, Bali SK, Singh V, Bhanwer AJS (2021) Association of eNOS and MCP-1 genetic variants with diabetic nephropathy in type 2 diabetes. Biochem Genet 59:966–996

  54. Kaur R, Matharoo K, Sharma R, Bhanwer AJS (2013) C-reactive protein + 1059 G > C polymorphism in type 2 diabetes and coronary artery disease patients. Meta Gene 1:82–92

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kim CH, Kim HK, Kim EH, Bae SJ, Park JY (2013) Relative contributions of insulin resistance and β-cell dysfunction to the development of type 2 diabetes in Koreans. Diabet Med 30(9):1075–1079

    Article  CAS  PubMed  Google Scholar 

  56. Li YH, Sheu WH, Lee IT (2020) Influence of Diabetic Retinopathy on the relationship between body Mass Index and Mortality in patients with poorly controlled type 2 diabetes. Diabetes Metab Syndr Obes 13:907–914

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pradeepa R, Anitha B, Mohan V, Ganesan A, Rema M (2008) Risk factors for diabetic retinopathy in a south indian type 2 diabetic population the Chennai Urban Rural Epidemiology Study (CURES) Eye Study-4. Diabet Med 25:536–542

    Article  CAS  PubMed  Google Scholar 

  58. Varma R, Macias GL, Torres M, Klein R, Pena FY, Azen SP (2007) Biologic risk factors associated with diabetic retinopathy: the Los Angeles latino Eye Study. Ophthalmology 114:1332–1340

    Article  PubMed  Google Scholar 

  59. Klein R, Klein BE, Moss SE, Cruickshanks KJ (1994) The Wisconsin epidemiologic study of diabetic retinopathy. XIV. Ten-year incidence and progression of diabetic retinopathy. Archieves of Opthalmology 112:1217–1228

    Article  CAS  Google Scholar 

  60. Haffner SM, Fong D, Stern MP, Pugh JA, Hazuda HP, Patterson JK, Klein R (1988) Diabetic retinopathy in Mexican Americans and non-hispanic whites. Diabetes 37:878–884

    Article  CAS  PubMed  Google Scholar 

  61. Nelson RG, Wolfe JA, Horton MB, Pettitt DJ, Bennett PH, Knowler WC (1989) Proliferative retinopathy in NIDDM. Incidence and risk factors in Pima Indians. Diabetes 38:435–440

    Article  CAS  PubMed  Google Scholar 

  62. Namperumalsamy P, Kim R, Vignesh TP, Nithya N, Royes J, Gijo T, Vijayakumar V (2009) Prevalence and risk factors for diabetic retinopathy: a population-based assessment from Theni District, South India. Br J Ophthalmol 93:429–434

    CAS  PubMed  Google Scholar 

  63. Liu J, Wu S, Wei H, Zhou K, Ruan Y, Lai W (2002) Effects of sex hormones and their balance on the proliferation of rat vascular endothelial cells. Horm Res 58:16–20

    CAS  PubMed  Google Scholar 

  64. Fonseca VA (ed) (2009) Cardiovascular Endocrinology. Contemporary endocrinology. Humana Press, Totowa, NJ

    Google Scholar 

  65. Vitale C, Fini M, Speziale G, Chierchia S (2010) Gender differences in the cardiovascular effects of sex hormones. Fundam Clin Pharmacol 24:675–685

    Article  CAS  PubMed  Google Scholar 

  66. Cunha-Vaz JG (1978) Pathophysiology of diabetic retinopathy. Br J Ophthalmol 62:351–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu J, Xu Z, Li YA, Dai S, Liu J, Pan J, Jiang Y (2019) Comparison between MassARRAY and pyrosequencing for CYP2C19 and ABCB1 gene variants of clopidogrel efficiency genotyping. Mol Membr Biol 35(1):1–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to all the participants who donated their blood samples for the present study. We are grateful towards Dr. Sohan Singh Eye hospital and Dr. Om Prakash Eye Hospital in Amritsar, Punjab (India) for providing us the blood samples and clinical information of patients. We are also thankful to Dr. Subhabrata Chakrabarti, Associate Director (Research) at LVPEI, Hyderabad (India) and Dr. Jay Chhablani at University of Pittsburgh for their valuable comments and suggestions during the study. The financial assistance to AJSB by CSIR through grant (27(0304)/14/EMR-II Dated: 21st November 2014) is acknowledged. The financial assistance under the scheme of “Centre with Potential for Excellence in Particular Area” through grant number F.8 − 2/2008(NS/PE) (UGC, India); and “University with Potential for Excellence” through grant number F.14 − 2/2008(NS/PE) (UGC, India) to AJSB at Guru Nanak Dev University, Amritsar is humbly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AJSB and Ruhi Sikka (RS1) designed the study. RS1 and Rhibhu Soni (RS2) collected the samples and clinical information. RS1 and PR performed the experiments. AJSB provided the reagents, material, and analysis tools. RS1, PR, and HG analyzed the data. RS1, HG and AJSB wrote the paper.

Corresponding author

Correspondence to Ruhi Sikka.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikka, R., Raina, P., Soni, R. et al. Genomic profile of diabetic retinopathy in a north indian cohort. Mol Biol Rep 50, 9769–9778 (2023). https://doi.org/10.1007/s11033-023-08772-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08772-z

Keywords

Navigation