Skip to main content
Log in

Overexpression of miR-17-5p may negatively impact p300/CBP factor-associated inflammation in a hypercholesterolemic advanced prostate cancer model

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Previously, we demonstrated that cholesterol triggers the increase in p300/CBP-associated factor (PCAF), targeted by miR-17-5p. The p300, IL-6, PCAF, and miR-17-5p genes have important and contradictory roles in inflammation and prostate cancer (PCa). This study aimed to demonstrate the potential anti-inflammatory effect of miR-17-5 in an advanced PCa model with diet-induced hypercholesterolemia.

Methods and results

In vitro, using the PC-3 cell line, we show that induction of miR-17-5p reduces p300 and PCAF expression, increases apoptosis, and decreases cell migration. Furthermore, we demonstrate that supplementing this same cell with cholesterol (2 µg/mL) triggers increased p300, IL-6, and PCAF. In vivo, after establishing the hypercholesterolemic (HCOL) model, xenografts were treated with miR-17-5p. Increased expression of this miR after intratumoral injections attenuated tumor growth in the control and HCOL animals and reduced cell proliferation.

Conclusion

Our results demonstrate that inducing miR-17-5p expression suppresses tumor growth and inflammatory mediator expression. Further studies should be conducted to fully explore the role of miR-17-5p and the involvement of inflammatory mediators p300, PCAF, and IL-6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available to the corresponding author upon reasonable request.

Code Availability

Not Applicable.

References

  1. Wu K, Spiegelman D, Hou T, Albanes D, Allen NE, Berndt SI et al (2016) Associations between unprocessed red and processed meat, poultry, seafood and egg intake and the risk of prostate cancer: a pooled analysis of 15 prospective cohort studies. Int J Cancer 138(10):2368–2382. https://doi.org/10.1002/ijc.29973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smidowicz A, Regula J (2015) Effect of nutritional status and dietary patterns on human serum C-reactive protein and interleukin-6 concentrations. Adv Nutr 6(6):738–747. https://doi.org/10.3945/an.115.009415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gathirua-Mwangi WG, Zhang J (2014) Dietary factors and risk for advanced prostate cancer. Eur J Cancer Prev 23(2):96–109. https://doi.org/10.1097/CEJ.0b013e3283647394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  5. Chen T, Wang LH, Farrar WL (2000) Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res 60(8):2132–2135

    CAS  PubMed  Google Scholar 

  6. Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H et al (1998) Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58(20):4640–4645

    CAS  PubMed  Google Scholar 

  7. Nguyen DP, Li J, Tewari AK (2014) Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int 113(6):986–992. https://doi.org/10.1111/bju.12452

    Article  CAS  PubMed  Google Scholar 

  8. Debes JD, Schmidt LJ, Huang H, Tindall DJ (2002) p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62(20):5632–5636

    CAS  PubMed  Google Scholar 

  9. Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM (2007) Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 120(4):719–733. https://doi.org/10.1002/ijc.22365

    Article  CAS  PubMed  Google Scholar 

  10. Huang J, Wan D, Li J, Chen H, Huang K, Zheng L (2015) Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury. Epigenetics 10(1):62–72. https://doi.org/10.4161/15592294.2014.990780

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ghizzoni M, Boltjes A, Graaf C, Haisma HJ, Dekker FJ (2010) Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative. Bioorg Med Chem 18(16):5826–5834. https://doi.org/10.1016/j.bmc.2010.06.089

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Ladd A, Dragoescu E, Budd WT, Ware JL, Zehner ZE (2009) MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 26(8):965–979. https://doi.org/10.1007/s10585-009-9287-2

    Article  CAS  PubMed  Google Scholar 

  13. Sikand K, Slane SD, Shukla GC (2009) Intrinsic expression of host genes and intronic miRNAs in prostate carcinoma cells. Cancer Cell Int 9:21. https://doi.org/10.1186/1475-2867-9-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gong AY, Eischeid AN, Xiao J, Zhao J, Chen D, Wang ZY et al (2012) Mir-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 12:492. https://doi.org/10.1186/1471-2407-12-492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pimenta R, Camargo JA, Candido P, Ghazarian V, Gonçalves GL, Guimarães VR et al (2022) Cholesterol triggers nuclear co-association of androgen receptor, p160 steroid coactivators, and p300/CBP-Associated factor leading to Androgenic Axis Transactivation in Castration-Resistant prostate Cancer. Cell Physiol Biochem 56(S4):1–15. https://doi.org/10.33594/000000592

    Article  PubMed  Google Scholar 

  16. Coucha M, Mohamed IN, Elshaer SL, Mbata O, Bartasis ML, El-Remessy AB (2017) High fat diet dysregulates microRNA-17-5p and triggers retinal inflammation: role of endoplasmic-reticulum-stress. World J Diabetes 8(2):56–65. https://doi.org/10.4239/wjd.v8.i2.56

    Article  PubMed  PubMed Central  Google Scholar 

  17. MINISTÉRIO DA SAÚDE - Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA) (2018) Estimativa 2018 - Incidência de Câncer no Brasil. http://www1.inca.gov.br/estimativa/2018/estimativa-2018.pdf Accessed

  18. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR (2007) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56(1):16–23. https://doi.org/10.2337/db06-1076

    Article  CAS  PubMed  Google Scholar 

  19. Zhang T, Tseng C, Zhang Y, Sirin O, Corn PG, Li-Ning-Tapia EM et al (2016) CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nat Commun 7:11674. https://doi.org/10.1038/ncomms11674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho HJ, Kwon GT, Park H, Song H, Lee KW, Kim JI et al (2015) A high-fat diet containing lard accelerates prostate cancer progression and reduces survival rate in mice: possible contribution of adipose tissue-derived cytokines. Nutrients 7(4):2539–2561. https://doi.org/10.3390/nu7042539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thapa D, Meng P, Bedolla RG, Reddick RL, Kumar AP, Ghosh R (2014) NQO1 suppresses NF-κB-p300 interaction to regulate inflammatory mediators associated with prostate tumorigenesis. Cancer Res 74(19):5644–5655. https://doi.org/10.1158/0008-5472.CAN-14-0562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chung S, Kim S, Son M, Kim M, Koh ES, Shin SJ et al (2019) Inhibition of p300/CBP-Associated factor attenuates renal Tubulointerstitial fibrosis through modulation of NF-kB and Nrf2. Int J Mol Sci 20(7). https://doi.org/10.3390/ijms20071554

  23. Stoen MJ, Andersen S, Rakaee M, Pedersen MI, Ingebriktsen LM, Bremnes RM et al (2021) High expression of mir-17-5p in tumor epithelium is a predictor for poor prognosis for prostate cancer patients. Sci Rep 11(1):13864. https://doi.org/10.1038/s41598-021-93208-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gang X, Yang Y, Zhong J, Jiang K, Pan Y, Karnes RJ et al (2016) P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget 7(12):15135–15149. https://doi.org/10.18632/oncotarget.7715

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hayashi T, Fujita K, Nojima S, Hayashi Y, Nakano K, Ishizuya Y et al (2018) High-Fat Diet-Induced inflammation accelerates prostate Cancer Growth via IL6 Signaling. Clin Cancer Res 24(17):4309–4318. https://doi.org/10.1158/1078-0432.CCR-18-0106

    Article  CAS  PubMed  Google Scholar 

  26. de Jong RCM, Ewing MM, de Vries MR, Karper JC, Bastiaansen AJNM, Peters HAB et al (2017) The epigenetic factor PCAF regulates vascular inflammation and is essential for intimal hyperplasia development. PLoS ONE 12(10):e0185820. https://doi.org/10.1371/journal.pone.0185820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu L, Xu C, Chen J, Li Q, Jiang H (2019) Downregulation of the transcriptional co-activator PCAF inhibits the proliferation and migration of vascular smooth muscle cells and attenuates NF-κB-mediated inflammatory responses. Biochem Biophys Res Commun 513(1):41–48. https://doi.org/10.1016/j.bbrc.2019.03.157

    Article  CAS  PubMed  Google Scholar 

  28. Jin L, Garcia J, Chan E, de la Cruz C, Segal E, Merchant M et al (2017) Therapeutic targeting of the CBP/p300 Bromodomain Blocks the growth of castration-resistant prostate Cancer. Cancer Res 77(20):5564–5575. https://doi.org/10.1158/0008-5472.CAN-17-0314

    Article  CAS  PubMed  Google Scholar 

  29. Lavery DN, Bevan CL (2011) Androgen receptor signalling in prostate cancer: the functional consequences of acetylation. J Biomed Biotechnol 2011:862125. https://doi.org/10.1155/2011/862125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof Dr Edna Frasson de Souza Montero for making the Bioterium of the Anesthesiology Laboratory of the Hospital das Clínicas of the Faculty of Medicine (LIM08) available for carrying out the in vivo experiments and/also to Mr. Mario Matsuo Itinoshe for the support with the animals. To the Laboratório de Investigação Médica da disciplina de Urologia (LIM55).

Funding

This work was supported by grants from the São Paulo Research Foundation (FAPESP) to Ruan Pimenta (2019/00156-7), Vitória Ghazarian (2019/19138-9), Juliana Alves de Camargo (2018/19906-3), Guilherme Lopes Gonçalves (2018/26528-5), Caroline Chiovatto (2021/02341-6), Karina Serafim (2022/09284-0) and Sabrina T. Reis (2020/01317-1).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results, revised the manuscript draft, and contributed: Ruan Pimenta wrote the manuscript and performed the in vitro and in vivo experiments, to the study design, intellectual input, to statistical analysis assisted in drafting and critical reading. Juliana A. Camargo contributed to in vitro and in vivo experiments. Guilherme L. Gonçalves contributed to in vivo experiments. Vitória Ghazarian performed the in vitro experiments. Patricia Candido contributed to the study design and performed the in vitro experiments. Vanessa R. Guimarães contributed to in vitro experiments. Poliana Romão contributed to in vitro experiments. Caroline Chiovatto contributed to in vivo experiments. Karina Silva contributed to in vivo experiments. Gabriel A dos Santos contributed to in vitro experiments. Iran A Silva contributed to intellectual input. Miguel Srougi supervised the experiments and intellectual information. William C. Nahas supervised the experiments and intellectual input. Kátia R. Leite supervised the experiments, contributed to the study design and intellectual input. Ana Flávia M. Pessoa contributed to intellectual input and in vivo experiments Nayara I. Viana supervised the experiments, contributed to the study design, intellectual input. Sabrina T. Reis contributed to the study design, supervised the experiments, intellectual input, to statistical analysis assisted in drafting and critical reading and funding action.

Corresponding author

Correspondence to Ruan Pimenta.

Ethics declarations

Ethics approval and consent to participate

This study was submitted and approved by the Research Ethics Committee of the University of Sao Paulo Medical School under the number #1360/2019.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenta, R., Camargo, J.A., Gonçalves, G.L. et al. Overexpression of miR-17-5p may negatively impact p300/CBP factor-associated inflammation in a hypercholesterolemic advanced prostate cancer model. Mol Biol Rep 50, 7333–7345 (2023). https://doi.org/10.1007/s11033-023-08638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08638-4

Keywords

Navigation