Skip to main content

Advertisement

Log in

Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bacteriophages (phages) are viruses that mainly infect bacteria and are ubiquitously distributed in nature, especially to their host. Phage engineering involves nucleic acids manipulation of phage genome for antimicrobial activity directed against pathogens through the applications of molecular biology techniques such as synthetic biology methods, homologous recombination, CRISPY-BRED and CRISPY-BRIP recombineering, rebooting phage-based engineering, and targeted nucleases including CRISPR/Cas9, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Management of bacteria is widely achieved using antibiotics whose mechanism of action has been shown to target both the genetic dogma and the metabolism of pathogens. However, the overuse of antibiotics has caused the emergence of multidrug-resistant (MDR) bacteria which account for nearly 5 million deaths as of 2019 thereby posing threats to the public health sector, particularly by 2050. Lytic phages have drawn attention as a strong alternative to antibiotics owing to the promising efficacy and safety of phage therapy in various models in vivo and human studies. Therefore, harnessing phage genome engineering methods, particularly CRISPR/Cas9 to overcome the limitations such as phage narrow host range, phage resistance or any potential eukaryotic immune response for phage-based enzymes/proteins therapy may designate phage therapy as a strong alternative to antibiotics for combatting bacterial antimicrobial resistance (AMR). Here, the current trends and progress in phage genome engineering techniques and phage therapy are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

AMR:

Antimicrobial resistance

CRISPY-BRED:

CRISPR/Cas9-bacteriophage recombineering with electroporated DNA

CRISPY-BRIP:

CRISPR/Cas9-bacteriophage recombineering with infectious particles

CRISPR-plasmid:

Clustered regularly interspaced short palindromic repeats-plasmid

CRISPR-Cas:

Clustered regularly interspaced short palindromic repeats-CRISPR associated proteins

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/Cas9

DNA:

Deoxyribonucleic acid

DSBs:

DNA double-strand breaks

dsDNA:

Double-stranded DNA

EPA:

Environmental protection agency

FDA:

Food and drug administration

FQs:

Fluoroquinolones

HDR:

Homology-directed repair

HIV:

Human immunodeficiency virus

HR:

Homologous recombination

MDR Bacteria:

Multidrug-resistant bacteria

NHEJ:

Nonhomologous end joining

ORFs:

Open reading frames

RNA:

Ribonucleic acid

ssDNA:

Single-stranded DNA

TALENs:

Transcription activator-like effector nucleases

tRNA:

Transfer RNA

UN:

United Nations

USA:

United States of America

ZFNs:

Zinc-finger nucleases

References

  1. Abdelsattar AS, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A (2021) Bacteriophages: from isolation to application. Curr Pharm Biotechnol 22. https://doi.org/10.2174/1389201022666210426092002

  2. Coffey A (2016) Bacteriophage and their lysins for elimination of infectious bacteria: review article bacteriophage and their lysins for elimination of infectious bacteria. no May 2009. https://doi.org/10.1111/j.1574-6976.2009.00176.x

    Article  Google Scholar 

  3. Scattolini S et al (2021) Characterization and in vitro efficacy against listeria monocytogenes of a newly isolated bacteriophage, ɸizsam-1. Microorganisms 9(4). https://doi.org/10.3390/microorganisms9040731

  4. Tao P (2019) Genetic Engineering of Bacteriophages against Infectious Diseases. no May 10:1–12. https://doi.org/10.3389/fmicb.2019.00954

    Article  Google Scholar 

  5. Mutalik VK, Arkin AP (2022) A phage Foundry Framework to systematically develop viral countermeasures to combat antibiotic-resistant bacterial pathogens. iScience 25(4):104121. https://doi.org/10.1016/j.isci.2022.104121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaidullina A, Harms A (2023) Toothpicks, logic, and next-generation sequencing_ systematic investigation of bacteriophage-host interactions. Curr Opin Microbiol 70:102225. https://doi.org/10.1016/j.mib.2022.102225

    Article  CAS  Google Scholar 

  7. Hassan AY, Lin JT, Ricker N, Anany H (2021) The age of phage: friend or foe in the new dawn of therapeutic and biocontrol applications? Pharmaceuticals 14(3):1–36. https://doi.org/10.3390/ph14030199

    Article  CAS  Google Scholar 

  8. Ryu S (2021) “Grand Challenges in Phage Biology,” Front. Microbiol, vol. 12, no. July, pp. 2019–2022, https://doi.org/10.3389/fmicb.2021.715039

  9. Azam AH (2021) “Bacteriophage Technology and Modern Medicine,”

  10. Ganesh SK, Subathra Devi C (2023) Molecular and therapeutic insights of rapamycin: a multi-faceted drug from Streptomyces hygroscopicus. Mol Biol Rep 50(4):3815–3833. https://doi.org/10.1007/s11033-023-08283-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alebouyeh M et al (2023) Intestinal colonization of vancomycin-resistant Enterococcus in children admitted to Mofid children’s hospital intensive care unit at admission and at discharge. Mol Biol Rep 3271–3281. https://doi.org/10.1007/s11033-022-08196-1

  12. Jain H, Chahal S, Singh I, Sain SK, Siwach P (2023) The rising threat of geminiviruses: molecular insights into the disease mechanism and mitigation strategies. Mol Biol Rep 50(4):3835–3848. https://doi.org/10.1007/s11033-023-08266-y

    Article  CAS  PubMed  Google Scholar 

  13. Cui Z, Xu Z, Wei Y, Zhang Q, Qin K, Ji X (2021) Characterization and genome analysis of a Novel Mu-like phage VW-6B isolated from the Napahai Plateau Wetland of China. Curr Microbiol 78(1):150–158. https://doi.org/10.1007/s00284-020-02277-9

    Article  CAS  PubMed  Google Scholar 

  14. Tesson F, Bernheim A (2023) Synergy and regulation of antiphage systems: toward the existence of a bacterial immune system ? Curr Opin Microbiol 71:102238. https://doi.org/10.1016/j.mib.2022.102238

    Article  CAS  PubMed  Google Scholar 

  15. John AM, Mercer DK (2023) Antimicrobial resistance: a biochemical society position statement. no February:33–38

    Google Scholar 

  16. Dewanggana MN, Evangeline C, Ketty MD, Waturangi DE, Yogiara, Magdalena S (2022) Isolation, characterization, molecular analysis and application of bacteriophage DW-EC to control enterotoxigenic Escherichia coli on various foods. Sci Rep 12(1):1–10. https://doi.org/10.1038/s41598-021-04534-8

    Article  CAS  Google Scholar 

  17. Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT (2023) Ll phage therapy: from biological mechanisms to future directions. Cell 186(1):17–31. https://doi.org/10.1016/j.cell.2022.11.017

    Article  CAS  PubMed  Google Scholar 

  18. Roszak M, Jabłon J (2022) “Bacteriophage – Ciprofloxacin Combination Effectiveness,” vol. 28, no. 6, pp. 613–622, https://doi.org/10.1089/mdr.2021.0324

  19. Lopez-luis BA, Ponce-de-leo A, Ortiz-brizuela E, Leal-vega FJ, Tovar-caldero YE (2022) Bobadilla-del-valle, “Risk factors Associated with failure of Linezolid Therapy in Vancomycin-Resistant Enterococcus faecium bacteremia. 28(6):744–749. https://doi.org/10.1089/mdr.2021.0333

  20. Chen J et al (2022) Different Effects of Antibiotics on Klebsiella pneumoniae and Escherichia coli Resistance Induced by Antibiotics. 28(6):660–669. https://doi.org/10.1089/mdr.2021.0326

  21. Ahmed BT, Mokhtar B, Yahia B, Wassila C (2023) “Antibiotic resistance: A Global Public Health Crisis and current strategies for Antibiotic Resistance : A Global Public Health Crisis and current strategies for combatting it,” no. April,

  22. Costanzo V, Roviello GN (2023) “The potential role of vaccines in preventing Antimicrobial Resistance (AMR): an update and future perspectives,” pp. 1–21,

  23. Ács N, Gambino M, Brøndsted L (October, 2020) Bacteriophage enumeration and detection methods. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.594868

  24. Helmy YA et al (2023) “Antimicrobial Resistance and recent Alternatives to Antibiotics for the control of bacterial pathogens with an emphasis on Foodborne Pathogens,”

  25. Pimenta J, Pinto AR, Jos M (2023) “Equine gram-negative oral microbiota: an Antimicrobial Resistances Watcher ?,” pp. 1–11,

  26. Islam S (2023) “A comprehensive review on bacterial vaccines combating Antimicrobial Resistance in Poultry,”

  27. Łobocka M, Dąbrowska K, Górski A (2021) Engineered Bacteriophage therapeutics: Rationale, Challenges and Future. BioDrugs 35(3):255–280. https://doi.org/10.1007/s40259-021-00480-z

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu R et al (2022) Bacteriophage therapy in aquaculture: current status and future challenges. Folia Microbiol (Praha). https://doi.org/10.1007/s12223-022-00965-6

    Article  PubMed  Google Scholar 

  29. Choi Y, Ha E, Kong M, Ryu S (2023) A novel chimeric endolysin with enhanced lytic and binding activity against Clostridium perfringens. LWT 181:114776. https://doi.org/10.1016/j.lwt.2023.114776

    Article  CAS  Google Scholar 

  30. Ali S, Karaynir A, Salih H, Oncü S, Bozdo B (2023) Characterization, genome analysis and antibiofilm efficacy of lytic Proteus phages RP6 and RP7 isolated from university hospital sewage. vol 326 no October 2022. https://doi.org/10.1016/j.virusres.2023.199049

    Article  Google Scholar 

  31. Release JN (2019) “New report calls for urgent action to avert antimicrobial resistance crisis,”

  32. Franco EG (2020) “Global Risks : An Unsettled World,” Glob. Risks Rep, pp. 8–17, 2020

  33. Dedrick RM et al (2019) Disseminated drug resistant Mycobacterium abscessus. 25(5):730–733. https://doi.org/10.1038/s41591-019-0437-z.Engineered

  34. Collaborators AR (2022) Articles Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. 6736(21). https://doi.org/10.1016/S0140-6736(21)02724-0

  35. Infections B (2023) “Current Promising Strategies against Antibiotic-Resistant Bacterial Infections,”

  36. Jeje O, Ewunkem AJ, Jeffers-francis LK (2023) “Serving two masters: Effect of Escherichia coli Dual Resistance on Antibiotic susceptibility,” pp. 1–20,

  37. Morris C, Wickramasingha D, Abdelfattah EM, Pereira RV, Okello E, Maier G (2023) Prevalence of antimicrobial resistance in fecal Escherichia coli and Enterococcus spp. isolates from beef cow-calf operations in northern California and associations with farm practices. no Febr 1–14. https://doi.org/10.3389/fmicb.2023.1086203

  38. Cristiane R, Leite T, Antônio T, Mendes DO (2023) Potential of the endogenous and artificially inserted CRISPR-Cas system for controlling virulence and antimicrobial resistance of food pathogens. Food Chem Adv 2:100229. no. February10.1016/j.focha.2023.100229

    Article  Google Scholar 

  39. Gahamanyi N, Umuhoza T, Saeed SI, Mayigane LN, Hakizimana JN (2023) “A review of the important Weapons against Antimicrobial Resistance in Sub-Saharan Africa,” pp. 136–156,

  40. Hyman P (2019) Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals 12(1). https://doi.org/10.3390/ph12010035

  41. Dedrick RM et al (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25(5):730–733. https://doi.org/10.1038/s41591-019-0437-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang S et al (2023) “Bacteriophage therapy as an application for bacterial infection in China,” pp. 1–20,

  43. Mahler M, Costa AR, Brouns SJJ, Van Beljouw SPB, Fineran PC (2023) Trends in Biotechnology Approaches for bacteriophage genome engineering. Trends Biotechnol 41(5):669–685. https://doi.org/10.1016/j.tibtech.2022.08.008

    Article  CAS  PubMed  Google Scholar 

  44. Sun Q et al (2023) Advance on Engineering of Bacteriophages by Advance on Engineering of Bacteriophages by Synthetic Biology. https://doi.org/10.2147/IDR.S402962

  45. Kim K, Shin J, Kang TA, Kim B, Kim WC (2023) CRISPR/Cas9-mediated AtGATA25 mutant represents a novel model for regulating hypocotyl elongation in Arabidopsis thaliana. Mol Biol Rep 50(1):31–41. https://doi.org/10.1007/s11033-022-07926-9

    Article  CAS  PubMed  Google Scholar 

  46. Mathew SM (2023) Strategies for generation of mice via CRISPR/HDR-mediated knock-in. Mol Biol Rep 50(4):3189–3204. https://doi.org/10.1007/s11033-023-08278-8

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y, Wang D, Lü P, Ma S, Chen K (2023) Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol Biol Rep 50(4):3723–3738. https://doi.org/10.1007/s11033-023-08240-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cameron P et al (2019) Harnessing type I CRISPR–Cas systems for genome engineering in human cells. Nat Biotechnol 37(12):1471–1477. https://doi.org/10.1038/s41587-019-0310-0

    Article  CAS  PubMed  Google Scholar 

  49. Lenneman BR, Fernbach J, Loessner MJ, Lu TK, Kilcher S (2021) Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol 68:151–159. https://doi.org/10.1016/j.copbio.2020.11.003

    Article  CAS  PubMed  Google Scholar 

  50. Wetzel KS et al (2021) CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage engineering. Sci Rep 11(1):1–6. https://doi.org/10.1038/s41598-021-86112-6

    Article  CAS  Google Scholar 

  51. Ramirez-Chamorro L, Boulanger P, Rossier O (2021) Strategies for bacteriophage T5 mutagenesis: expanding the Toolbox for Phage Genome Engineering. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.667332

  52. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. States U et al (2022) “Molecular Epidemiology of Carbapenem-Resistant,” vol. 28, no. 6, https://doi.org/10.1089/mdr.2021.0352

  54. Mu AR (2022) Analysis of Antibiotic Resistance and Biofilm-Forming capacity in tetracycline-resistant Bacteria from a Coastal lagoon. 28(6):654–659. https://doi.org/10.1089/mdr.2021.0255

  55. Kang K, Imamovic L, Misiakou M, Bornakke M, Heshiki Y (2021) Expansion and persistence of antibiotic-specific resistance genes following antibiotic treatment. Gut Microbes 13(1):1–19. https://doi.org/10.1080/19490976.2021.1900995

    Article  CAS  PubMed  Google Scholar 

  56. Ndagi U, Falaki AA, Abdullahi M, Lawal M (2020) Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug. 18451–18468. https://doi.org/10.1039/d0ra01484b

  57. Chen Y, Li W, Shi K, Fang Z, Yang Y, Zhang R (2023) “Isolation and characterization of a novel phage belonging to a new genus against Vibrio parahaemolyticus,” pp. 1–11,

  58. Manohar P, Madurantakam Royam M, Loh B, Bozdogan B, Nachimuthu R, Leptihn S (2022) Synergistic Effects of phage-antibiotic combinations against Citrobacter amalonaticus. ACS Infect Dis 8(1):59–65. https://doi.org/10.1021/acsinfecdis.1c00117

    Article  CAS  PubMed  Google Scholar 

  59. Saini S, Shanbhag C, Saraogi I (2023) Chemical Approaches to tackle the Silent Pandemic of Antibiotic Resistance. no April. https://doi.org/10.51167/acm00051

    Article  Google Scholar 

  60. Van Der Horst MA, Schuurmans JM, Smid MC (2011) De Novo Acquisition of Resistance to three antibiotics by Escherichia coli. 17(2). https://doi.org/10.1089/mdr.2010.0101

  61. Ji X et al (2022) Molecular characteristics of extended-spectrum beta-lactamase-producing Escherichia coli strains. 28(6):750–757. https://doi.org/10.1089/mdr.2021.0298

  62. Uba AI, Abdulazeez MA, Usman SS, Tabakoglu HO, Abubakar H (2015) “Phage Dısplay Technology As A Strong Alternatıve To Hybrıdoma Technology For Monoclonal Antıbody Productıon,”

  63. Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439. https://doi.org/10.1146/annurev-biochem-060713-035418

    Article  CAS  PubMed  Google Scholar 

  64. Blazanin M, Lam WT, Vasen E, Chan BK, Turner PE (2022) “Decay and damage of therapeutic phage OMKO1 by environmental stressors,” PLoS One, vol. 17, no. 2 February, pp. 1–13, https://doi.org/10.1371/journal.pone.0263887

  65. Vera-Mansilla J, Sánchez P, Silva-Valenzuela CA, Molina-Quiroz RC (2022) Isolation and characterization of Novel Lytic Phages infecting Multidrug-Resistant Escherichia coli. Microbiol Spectr 10(1). https://doi.org/10.1128/spectrum.01678-21

  66. Dong Y et al (2022) Characterization and genomic analysis of the First Podophage Infecting Shewanella, representing a novel viral cluster. Front Microbiol 13:1–13. https://doi.org/10.3389/fmicb.2022.853973

    Article  CAS  Google Scholar 

  67. Majdani R, Ghahfarokhi ES (2022) Isolation and characterization of lytic bacteriophages against Pseudomonas aeruginosa isolates from human infections in the north-west of Iran. 14(2):203–213

  68. Zelcbuch L et al (2021) Luminescent phage-based detection of klebsiella pneumoniae: from engineering to diagnostics. Pharmaceuticals 14(4). https://doi.org/10.3390/ph14040347

  69. Pulkkinen EM, Hinkley TC, Nugen SR (2019) Utilizing in vitro DNA assembly to engineer a synthetic T7 nanoluc reporter phage for Escherichia coli detection. Integr Biol 11(3):63–68. https://doi.org/10.1093/intbio/zyz005

    Article  Google Scholar 

  70. Braun P, Raab R, Bugert JJ, Braun S “Recombinant Reporter Phage rTUN1::,” 2023, https://doi.org/10.1021/acssensors.2c01822

  71. Vogele K, Falgenhauer E, Von Schönberg S, Simmel FC, Pirzer T (2021) Small antisense DNA-Based gene silencing enables cell-free bacteriophage manipulation and genome replication. ACS Synth Biol 10(3):459–465. https://doi.org/10.1021/acssynbio.0c00402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li M, Shi D, Li Y, Xiao Y, Chen M, Chen L (2020) Recombination of T4-like phages and its activity against pathogenic Escherichia coli in Planktonic and Biofilm Forms. Virol Sin 35(5):651–661. https://doi.org/10.1007/s12250-020-00233-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Amankwah S, Abdella K, Kassa T (2021) Bacterial biofilm destruction: a focused review on the recent use of phage-based strategies with other antibiofilm agents. Nanotechnol Sci Appl 14:161–177. https://doi.org/10.2147/NSA.S325594

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mohammadi M, Saffari M, Siadat SD, Hejazi SH (2023) Isolation, characterization, therapeutic potency, and genomic analysis of a novel bacteriophage vB _ KshKPC – M against carbapenemase – producing Klebsiella pneumoniae strains (CRKP) isolated from ventilator – associated pneumoniae (VAP) infection of COVID – 19 patients. Ann Clin Microbiol Antimicrob. https://doi.org/10.1186/s12941-023-00567-1

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nobrega FL et al (2018) Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol 16:760

    Article  CAS  PubMed  Google Scholar 

  76. Lammens EM, Nikel PI, Lavigne R (2020) Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 11(1):1–14. https://doi.org/10.1038/s41467-020-19124-x

    Article  CAS  Google Scholar 

  77. Isaev A, Andriianov A, Znobishcheva E, Zorin E, Morozova N, Severinov K (2022) Editing of phage genomes—recombineering-assisted SpCas9 modification of Model Coliphages T7, T5, and T3. Mol Biol 56(6):801–815. https://doi.org/10.1134/S0026893322060073

    Article  CAS  Google Scholar 

  78. Mahler M, Costa AR, van Beljouw SPB, Fineran PC, Brouns SJJ (2022) “Approaches for bacteriophage genome engineering,” Trends Biotechnol, vol. xx, no. xx, pp. 1–17, https://doi.org/10.1016/j.tibtech.2022.08.008

  79. Shen J, Zhou J, Chen G-Q, Xiu Z-L (2018) Efficient Genome Engineering of a virulent Klebsiella. J Virol 92(17):1–20

    Article  CAS  Google Scholar 

  80. Hoshiga F, Yoshizaki K, Takao N, Miyanaga K, Tanji Y (2019) Modification of T2 phage infectivity toward Escherichia coli O157:H7 via using CRISPR/Cas9. FEMS Microbiol Lett 366(4):1–7. https://doi.org/10.1093/femsle/fnz041

    Article  CAS  Google Scholar 

  81. Salmonella M, Almoghrabi SZ, El-obeid T, Al-hadidi SH, Al H (2022) Retail chicken carcasses as a Reservoir. 28(7):824–831. https://doi.org/10.1089/mdr.2021.0414

  82. Duong MM, Carmody CM, Ma Q, Peters JE, Nugen SR (2020) Optimization of T4 phage engineering via CRISPR/Cas9. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-75426-6

    Article  CAS  Google Scholar 

  83. Xia X (2023) “Optimizing protein production in therapeutic phages against a bacterial Pathogen, Mycobacterium abscessus,” no. 1, pp. 189–209,

  84. Palma M (2023) “Aspects of phage-based vaccines for protein and Epitope Immunization,” pp. 1–23,

  85. Maffei E et al (2021) Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 19(11):e3001424. https://doi.org/10.1371/journal.pbio.3001424

  86. Bayat F, Didar TF, Hosseinidoust Z (2021) Emerging investigator series: bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater. Environ Sci Nano 8(2):367–389. https://doi.org/10.1039/d0en00962h

    Article  CAS  Google Scholar 

  87. Airola C et al (2023)

  88. Bondad-reantaso MG et al (2022) “Review of alternatives to antibiotic use in aquaculture,” no. pp. 1–31, 2023, https://doi.org/10.1111/raq.12786

  89. Pan P et al (2023) Bacteriophage – based techniques for elucidating the function of zebrafish gut microbiota. 2039–2059. https://doi.org/10.1007/s00253-023-12439-x

Download references

Acknowledgements

No acknowledgements.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Sani Sharif Usman and Evangeline Christina conceived the idea; Sani Sharif Usman designed the review and gathered the information; Sani Sharif Usman, Abdullahi Ibrahim Uba and Evangeline Christina wrote the manuscript. The authors read and approved the final manuscript as well as agreed to authorship and submission of the manuscript for review.

Corresponding author

Correspondence to Evangeline Christina.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Authors have declared that no competing interest exists.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, S.S., Uba, A.I. & Christina, E. Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics. Mol Biol Rep 50, 7055–7067 (2023). https://doi.org/10.1007/s11033-023-08557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08557-4

Keywords

Navigation