Skip to main content
Log in

Pathological Mechanisms Induced by TRPM2 Ion Channels Activation in Renal Ischemia-Reperfusion Injury

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Renal ischemia-reperfusion (IR) injury triggers a cascade of signaling reactions involving an increase in Ca2 + charge and reactive oxygen species (ROS) levels resulting in necrosis, inflammation, apoptosis, and subsequently acute kidney injury (AKI).

Transient receptor potential (TRP) channels include an essential class of Ca2+ permeable cation channels, which are segregated into six main channels: the canonical channel (TRPC), the vanilloid-related channel (TRPV), the melastatin-related channel (TRPM), the ankyrin-related channel (TRPA), the mucolipin-related channel (TRPML) and polycystin-related channel (TRPP) or polycystic kidney disease protein (PKD2). TRP channels are involved in adjusting vascular tone, vascular permeability, cell volume, proliferation, secretion, angiogenesis and apoptosis.

TRPM channels include eight isoforms (TRPM1–TRPM8) and TRPM2 is the second member of this subfamily that has been expressed in various tissues and organs such as the brain, heart, kidney and lung. Renal TRPM2 channels have an important role in renal IR damage. So that TRPM2 deficient mice are resistant to renal IR injury. TRPM2 channels are triggered by several chemicals including hydrogen peroxide, Ca2+, and cyclic adenosine diphosphate (ADP) ribose (cADPR) that are generated during AKI caused by IR injury, as well as being implicated in cell death caused by oxidative stress, inflammation, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Karimi F, Nematbakhsh M (2021) Mas Receptor Blockade Promotes Renal Vascular Response to Ang II after Partial Kidney Ischemia/Reperfusion in a Two-Kidney-One-Clip Hypertensive Rats Model. International Journal of Nephrology. ;2021

  2. Gholampour F, Karimifard F, Owji S (2015) Berberine improves liver injury following renal ischemia reperfusion in rats. Iran J Sci Technol 39(A1):17

    Google Scholar 

  3. Liu A, Yang B (2019) Roles of TRPM7 in renal ischemia-reperfusion injury. Curr Protein Pept Sci 20(8):777–788

    Article  CAS  PubMed  Google Scholar 

  4. Patschan D, Patschan S, Müller G (2012) Inflammation and microvasculopathy in renal ischemia reperfusion injury. Journal of transplantation. ;2012

  5. De Rosa S, Antonelli M, Ronco C (2017) Hypothermia and kidney: a focus on ischaemia–reperfusion injury. Nephrol Dialysis Transplantation 32(2):241–247

    Google Scholar 

  6. Zhan K-y, Yu P-l, Liu C-h, Luo J-h, Yang W (2016) Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. Acta Pharmacol Sin 37(1):4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Legrand M, Mik EG, Johannes T, Payen D, Ince C (2008) Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med 14(7):502–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yapca OE, Borekci B, Suleyman H (2013) Ischemia-reperfusion damage. Eurasian J Med 45(2):126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev cell Mol biology 298:229–317

    Article  CAS  Google Scholar 

  10. Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiology-Cell Physiol 282(2):C227–C41

    Article  CAS  Google Scholar 

  11. Sugiyama S, Hanaki Y, Ogawa T, Hieda N, Taki K, Ozawa T (1988) The effects of SUN 1165, a novel sodium channel blocker, on ischemia-induced mitochondrial dysfunction and leakage of lysosomal enzymes in canine hearts. Biochem Biophys Res Commun 157(2):433–439

    Article  CAS  PubMed  Google Scholar 

  12. Salvadori M, Rosso G, Bertoni E (2015) Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J transplantation 5(2):52

    Article  Google Scholar 

  13. Roberts BN, Christini DJ (2011) NHE inhibition does not improve Na + or Ca2 + overload during reperfusion: using modeling to illuminate the mechanisms underlying a therapeutic failure. PLoS Comput Biol 7(10):e1002241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Inserte J, Hernando V, Garcia-Dorado D (2012) Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovascular Res 96(1):23–31

    Article  CAS  Google Scholar 

  15. Chatauret N, Badet L, Barrou B, Hauet T (2014) Ischemia-reperfusion: From cell biology to acute kidney injury. Progrès en urologie 24:S4–S12

    Article  PubMed  Google Scholar 

  16. Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol 6:524–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lemasters J, Bond J, Chacon E, Harper I, Kaplan S, Ohata H et al (1996) The pH paradox in ischemia-reperfusion injury to cardiac myocytes. Myocardial ischemia: mechanisms, reperfusion, protection. :99–114

  18. Heyman SN, Rosenberger C, Rosen S (2010) Experimental ischemia–reperfusion: biases and myths—the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int 77(1):9–16

    Article  PubMed  Google Scholar 

  19. Schrier RW, Arnold PE, Van Putten VJ, Burke TJ (1987) Cellular calcium in ischemic acute renal failure: role of calcium entry blockers. Kidney Int 32(3):313–321

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y (2011) Roles of TRPM2 in oxidative stress. Cell Calcium 50(3):279–287

    Article  CAS  PubMed  Google Scholar 

  21. Yu P, Xue X, Zhang J, Hu X, Wu Y, Jiang L-H et al (2017) Identification of the ADPR binding pocket in the NUDT9 homology domain of TRPM2. J Gen Physiol 149(2):219–235

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hiroi T, Wajima T, Negoro T, Ishii M, Nakano Y, Kiuchi Y et al (2013) Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovascular Res 97(2):271–281

    Article  CAS  Google Scholar 

  23. Uchida K, Tominaga M (2011) TRPM2 modulates insulin secretion in pancreatic β-cells. Islets 3(4):209–211

    Article  PubMed  Google Scholar 

  24. Miller BA, Cheung JY (2016) TRPM2 protects against tissue damage following oxidative stress and ischaemia–reperfusion. J Physiol 594(15):4181–4191

    Article  CAS  PubMed  Google Scholar 

  25. Marko L, Mannaa M, Haschler T, Krämer S, Gollasch M (2017) Renoprotection: focus on TRPV 1, TRPV 4, TRPC 6 and TRPM 2. Acta Physiol 219(3):591–614

    Article  Google Scholar 

  26. Guinamard R, Paulais M, Lourdel S, Teulon J (2012) A calcium-permeable non-selective cation channel in the thick ascending limb apical membrane of the mouse kidney. Biochim et Biophys Acta (BBA)-Biomembranes 1818(5):1135–1141

    Article  CAS  Google Scholar 

  27. Huang Y, Fliegert R, Guse AH, Lü W, Du J (2020) A structural overview of the ion channels of the TRPM family. Cell Calcium 85:102111

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun S-C, Penn L et al (2006) TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiology-Cell Physiol 290(4):C1146–C59

    Article  CAS  Google Scholar 

  29. Rosenbaum T (2015) Activators of TRPM2: Getting it right. J Gen Physiol 145(6):485–487

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L (2018) Structure of a TRPM2 channel in complex with Ca2 + explains unique gating regulation. Elife 7:e36409

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gao G, Wang W, Tadagavadi RK, Briley NE, Love MI, Miller BA et al (2014) TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J Clin Investig 124(11):4989–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang L, Fu T-M, Zhou Y, Xia S, Greka A, Wu H (2018) Structures and gating mechanism of human TRPM2. Science 362:6421

    Article  Google Scholar 

  33. Abumaria N, Li W, Clarkson AN (2019) Role of the chanzyme TRPM7 in the nervous system in health and disease.Cellular and Molecular Life Sciences. :1–10

  34. Tong Q, Zhang W, Conrad K, Mostoller K, Cheung JY, Peterson BZ et al (2006) Regulation of the transient receptor potential channel TRPM2 by the Ca2 + sensor calmodulin. J Biol Chem 281(14):9076–9085

    Article  CAS  PubMed  Google Scholar 

  35. Turlova E, Feng Z-p, Sun H-s (2018) The role of TRPM2 channels in neurons, glial cells and the blood-brain barrier in cerebral ischemia and hypoxia. Acta Pharmacol Sin 39(5):713–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheung JY, Miller BA (2017) Transient Receptor Potential–Melastatin Channel Family Member 2: Friend or Foe. Trans Am Clin Climatol Assoc 128:308

    PubMed  PubMed Central  Google Scholar 

  37. Eraslan E, Tanyeli A, Polat E, Polat E (2019) 8-Br‐cADPR, a TRPM2 ion channel antagonist, inhibits renal ischemia–reperfusion injury. J Cell Physiol 234(4):4572–4581

    Article  CAS  PubMed  Google Scholar 

  38. Malko P, Jiang L-H (2020) TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions.Redox Biology. :101755

  39. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    Article  PubMed  Google Scholar 

  40. McHugh D, Flemming R, Xu S-Z, Perraud A-L, Beech DJ (2003) Critical intracellular Ca2 + dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278(13):11002–11006

    Article  CAS  PubMed  Google Scholar 

  41. Starkus J, Beck A, Fleig A, Penner R (2007) Regulation of TRPM2 by extra-and intracellular calcium. J Gen Physiol 130(4):427–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18(1):61–69

    Article  CAS  PubMed  Google Scholar 

  43. Ramesh G, Reeves WB (2004) Inflammatory cytokines in acute renal failure. Kidney Int 66:S56–S61

    Article  Google Scholar 

  44. Furuichi K, Wada T, Kaneko S, Murphy PM (2008) Roles of chemokines in renal ischemia/reperfusion injury. Front Biosci 13:4021–4028

    Article  CAS  PubMed  Google Scholar 

  45. Stroo I, Stokman G, Teske GJ, Raven A, Butter LM, Florquin S et al (2010) Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase. Int Immunol 22(6):433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rabb H, O’Meara YM, Maderna P, Coleman P, Brady HR (1997) Leukocytes, cell adhesion molecules and ischemic acute renal failure. Kidney Int 51(5):1463–1468

    Article  CAS  PubMed  Google Scholar 

  47. Kher A, Meldrum KK, Wang M, Tsai BM, Pitcher JM, Meldrum DR (2005) Cellular and molecular mechanisms of sex differences in renal ischemia–reperfusion injury. Cardiovascular Res 67(4):594–603

    Article  CAS  Google Scholar 

  48. Thurman JM (2007) Triggers of inflammation after renal ischemia/reperfusion. Clin Immunol 123(1):7–13

    Article  CAS  PubMed  Google Scholar 

  49. Malek M, Nematbakhsh M (2015) Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Ren injury Prev 4(2):20

    CAS  Google Scholar 

  50. Robledo-Avila FH, Ruiz-Rosado JdD, Brockman KL, Partida-Sánchez S (2020) The TRPM2 Ion channel regulates inflammatory functions of neutrophils during listeria monocytogenes infection. Front Immunol 11:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y et al (2008) TRPM2-mediated Ca 2 + influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14(7):738–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target therapy 2(1):1–9

    CAS  Google Scholar 

  53. Faouzi M, Penner R (2014) Trpm2. Mammalian Transient Receptor Potential (TRP) Cation Channels. :403–26

  54. Sung FL, Zhu TY, Au-Yeung KK, Siow YL, Karmin O (2002) Enhanced MCP-1 expression during ischemia/reperfusion injury is mediated by oxidative stress and NF-κB. Kidney Int 62(4):1160–1170

    Article  CAS  PubMed  Google Scholar 

  55. Cao CC, Ding XQ, Ou ZL, Liu CF, Li P, Wang L et al (2004) In vivo transfection of NF-κB decoy oligodeoxynucleotides attenuate renal ischemia/reperfusion injury in rats. Kidney Int 65(3):834–845

    Article  CAS  PubMed  Google Scholar 

  56. Kenan Kinaci M, Erkasap N, Kucuk A, Koken T, Tosun M (2012) Effects of quercetin on apoptosis, NF-κB and NOS gene expression in renal ischemia/reperfusion injury. Experimental and Therapeutic Medicine 3(2):249–254

    Article  PubMed  Google Scholar 

  57. Wang Y, Chen L, Wang K, Da Y, Zhou M, Yan H et al (2019) Suppression of TRPM2 reduces renal fibrosis and inflammation through blocking TGF-β1-regulated JNK activation. Biomed Pharmacother 120:109556

    Article  CAS  PubMed  Google Scholar 

  58. Kurata Y, Tanaka T, Cernecka H, Eitner F, Nangaku M (2022) TRPM2 Plays a Minor Role in AKI and Kidney Fibrosis. Kidney360 3(1):153

    Article  PubMed  Google Scholar 

  59. Langley B, Ratan RR (2004) Oxidative stress-induced death in the nervous system: Cell cycle dependent or independent? J Neurosci Res 77(5):621–629

    Article  CAS  PubMed  Google Scholar 

  60. Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29(3–4):323–333

    Article  CAS  PubMed  Google Scholar 

  61. Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, ALSalamat HA, Bashatwah RM (2018) Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. Eurasian J Med 50(3):193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinson’s disease 3(4):461–491

    Article  CAS  Google Scholar 

  63. Makris D, Mertens PR, Dounousi E, Giamouzis G, Nseir S (2018) Oxidative Stress in the Critically Ill Patients. Pathophysiology and Potential Interventions. Hindawi

  64. Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23(1):21–48

    Article  CAS  PubMed  Google Scholar 

  65. Cakir M, Polat A, Tekin S, Vardi N, Taslidere E, Rumeysa Duran Z et al (2015) The effect of dexmedetomidine against oxidative and tubular damage induced by renal ischemia reperfusion in rats. Ren Fail 37(4):704–708

    Article  CAS  PubMed  Google Scholar 

  66. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173

    Article  CAS  PubMed  Google Scholar 

  67. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly (ADP-ribose) polymerase. Br J Pharmacol 143(1):186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hack CT, Buck T, Bagnjuk K, Eubler K, Kunz L, Mayr D et al (2019) A Role for H2O2 and TRPM2 in the Induction of Cell Death: Studies in KGN Cells. Antioxidants 8(11):518

    Article  CAS  PubMed Central  Google Scholar 

  69. Di A, Mehta D, Malik AB (2016) ROS-activated calcium signaling mechanisms regulating endothelial barrier function. Cell Calcium 60(3):163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miller BA, Zhang W (2011) TRP channels as mediators of oxidative stress.Transient Receptor Potential Channels. :531–44

  71. Catara G, Grimaldi G, Schembri L, Spano D, Turacchio G, Monte ML et al (2017) PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions. Sci Rep 7(1):1–17

    Article  CAS  Google Scholar 

  72. Kashio M, Tominaga M (2017) Redox-Sensitive Trp Channels: Trpa1 and Trpm2. Redox: Principles and Advanced Applications. :203

  73. Jiang L-H, Li X, Mortadza SAS, Lovatt M, Yang W (2018) The TRPM2 channel nexus from oxidative damage to Alzheimer’s pathologies: An emerging novel intervention target for age-related dementia. Ageing Res Rev 47:67–79

    Article  PubMed  Google Scholar 

  74. Kosieradzki M, Rowiński W (eds) (2008) Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplantation proceedings: Elsevier

  75. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565

    Article  CAS  PubMed  Google Scholar 

  76. Wehage E, Eisfeld I Jr, Jüngling E, Zitt C, Lückhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide: a splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277(26):23150–23156

    Article  CAS  PubMed  Google Scholar 

  77. Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K et al (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278(18):16222–16229

    Article  CAS  PubMed  Google Scholar 

  78. Kar F, Hacioglu C, Senturk H, Donmez DB, Kanbak G (2020) The role of oxidative stress, renal inflammation, and apoptosis in post ischemic reperfusion injury of kidney tissue: the protective effect of dose-dependent boric acid administration. Biol Trace Elem Res 195(1):150–158

    Article  CAS  PubMed  Google Scholar 

  79. LaFavers KA, Macedo E, Garimella PS, Lima C, Khan S, Myslinski J et al (2019) Circulating uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel. Sci Transl Med 11(512):eaaw3639

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schriewer JM, Peek CB, Bass J, Schumacker PT (2013) ROS-Mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia–reperfusion. J Am Heart Association 2(2):e000159

    Article  Google Scholar 

  81. Chen S, Meng X-F, Zhang C (2013) Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury. BioMed research international. 2013

  82. Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M et al (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases.Critical Reviews™ in Eukaryotic Gene Expression. 24(1)

  83. Buelow B, Song Y, Scharenberg AM (2008) The Poly (ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem 283(36):24571–24583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang F, Xie R, Munoz FM, Lau SS, Monks TJ (2014) PARP-1 hyperactivation and reciprocal elevations in intracellular Ca2 + during ROS-induced nonapoptotic cell death. Toxicol Sci 140(1):118–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S et al (2012) Mitochondrial Ca2 + and apoptosis. Cell Calcium 52(1):36–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miller BA (2004) Inhibition of TRPM2 function by PARP inhibitors protects cells from oxidative stress-induced death. Br J Pharmacol 143(5):515–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yildar M, Aksit H, Korkut O, Ozyigit MO, Sunay B, Seyrek K (2014) Protective effect of 2-aminoethyl diphenylborinate on acute ischemia–reperfusion injury in the rat kidney. J Surg Res 187(2):683–689

    Article  CAS  PubMed  Google Scholar 

  88. Kashio M, Tominaga M (2017) The TRPM2 channel: a thermo-sensitive metabolic sensor. Channels 11(5):426–433

    Article  PubMed  PubMed Central  Google Scholar 

  89. Facchinetti F, Furegato S, Terrazzino S, Leon A (2002) H2O2 induces upregulation of Fas and Fas ligand expression in NGF-differentiated PC12 cells: Modulation by cAMP. J Neurosci Res 69(2):178–188

    Article  CAS  PubMed  Google Scholar 

  90. Takeyama N, Miki S, Hirakawa A, Tanaka T (2002) Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis. Exp Cell Res 274(1):16–24

    Article  CAS  PubMed  Google Scholar 

  91. Li L, Sha Z, Wang Y, Yang D, Li J, Duan Z et al (2019) Pre–treatment with a combination of Shenmai and Danshen injection protects cardiomyocytes against hypoxia/reoxygenation–and H2O2–induced injury by inhibiting mitochondrial permeability transition pore opening. Experimental and therapeutic medicine 17(6):4643–4652

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author (s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh karimi.

Ethics declarations

Conflict of interest

None.

Compliance with ethical standards

This manuscript does not contain any human or animal studies by the authors. This manuscript is an overview of research on the subject of Pathological Mechanisms Induced by TRPM2 Ion Channels Activation in Renal Ischemia-Reperfusion Injury” and the author (s) received no financial support for the research, authorship, and/or publication of this manuscript. This manuscript does not contain any studies with human participants performed by any of the authors. This manuscript does not contain any studies with animals performed by any of the authors. This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanahmad, H., Mirbod, S.M., karimi, F. et al. Pathological Mechanisms Induced by TRPM2 Ion Channels Activation in Renal Ischemia-Reperfusion Injury. Mol Biol Rep 49, 11071–11079 (2022). https://doi.org/10.1007/s11033-022-07836-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07836-w

Keywords

Navigation