Skip to main content

Advertisement

Log in

Neuroprotective effect of geraniol on neurological disorders: a review article

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Neurological disorders are structural, biochemical, and electrical abnormalities that affect the peripheral and central nervous systems. Paralysis, muscle weakness, tremors, spasms, and partial or complete loss of sensation are some symptoms of these disorders. Neurorehabilitation is the main treatment for neurological disorders. Treatments can improve the quality of life of patients. Neuroprotective substances of natural origin are used for the treatments of these disorders.

Methods and Results

Online databases, such as Google Scholar, PubMed, ScienceDirect, and Scopus were searched to evaluate articles from 1981-2021 using the Mesh words of geraniol (GER), neurological disorders, epilepsy, spinal cord injury (SCI), Parkinson’s diseases (PD), and depression. A total of 87 studies were included in this review. GER with antioxidant, anti-inflammatory, and neuroprotective effects can improve the symptoms and reduce the progression of neurological diseases. GER exhibits neuroprotective effects by binding to GABA and glycine receptors as well as by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway and regulating the expression of nucleotide-binding oligomerization of NLRP3 inflammasome. In this study, the effect of GER was investigated on neurological disorders, such as epilepsy, SCI, PD, and depression.

Conclusion

Although the medicinal uses of GER have been reported, more clinical and experimental studies are needed to investigate the effect of using traditional medicine on improving lifethreatening diseases and the quality of life of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

WHO:

World Health Organization

PD:

Parkinson’s disease

SCI:

Spinal cord injury

GABAA:

Gamma-aminobutyric acid receptor type A

EO:

Essential oil

PTZ:

Pentylenetetrazole

PIC:

Picrotoxin

GABA:

Gamma-aminobutyric acid

STR:

Strychnine

E1:

Hydroalcoholic extract

CIT:

Citral

GER:

Geraniol

NMDAR1:

N-methyl-D-aspartate receptor 1

iNOS:

Inducible nitric oxide synthase

NF-κB:

Kappa-light-chain-enhancer of activated B cells

MAPK:

P38 Mitogen-activated protein kinases

SN:

Substantia nigra

ROS:

Reactive oxygen species

ATP:

Adenosine triphosphate

Cyc 1:

Cytochrome c

α-Syn:

α-Synuclein

MPTP:

1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine

MPP+:

1-Methyl-4-phenylpiridinium

DAT:

DA-ergic neurons with dopamine transporter

CSF:

Cerebrospinal fluid

BBB:

Blood–brain barrier

IL-6:

Interleukin

TNF-α:

Tumour necrosis factor

ASC:

Apoptosis-associated specklike protein

CUMS:

Chronic unpredictable mild stress

CNS:

Central nervous system

HB:

Hole board

OF:

Open field

BIST:

Barbiturate-induced sleeping time

CP:

Cisplatin

MWM:

Morris water maze

TQ:

Thymoquinone

FST:

Forced swimming tests

TST:

Tail suspension tests

NLRP3:

Domain-like receptor family pyrin domain-containing 3

References

  1. Patel V, Chisholm D, Parikh R, Charlson FJ, Degenhardt L, Dua T et al (2016) Global priorities for addressing the burden of mental, neurological, and substance use disorders. World Bank, Washington

    Book  Google Scholar 

  2. Zis P, Hadjivassiliou M (2019) Treatment of neurological manifestations of gluten sensitivity and coeliac disease. Curr Treat Options Neurol 21:1–10

    Article  Google Scholar 

  3. Arumugam A, Thiyagarajan D (2022) Role of nutrition in pathogenesis of neurological disorders. Role of nutrients in neurological disorders. Springer, Singapore, pp 143–58

    Chapter  Google Scholar 

  4. Organization WH (2006) Neurological disorders: public health challenges. World Health Organization.

  5. Boice JD Jr, Quinn B, Al-Nabulsi I, Ansari A, Blake PK, Blattnig SR et al (2022) A million persons, a million dreams: a vision for a national center of radiation epidemiology and biology. Int J Radiat Biol 98:795–821

    Article  PubMed  Google Scholar 

  6. Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24:15–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butler C, Zeman A (2005) Neurological syndromes which can be mistaken for psychiatric conditions. J Neurol Neurosurg Psychiatry 76:i31–i38

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rekha KR, Selvakumar GP, Santha K, Sivakamasundari RI (2013) Geraniol attenuates α-synuclein expression and neuromuscular impairment through increase dopamine content in MPTP intoxicated mice by dose dependent manner. Biochem Biophys Res Commun 440:664–670

    Article  CAS  PubMed  Google Scholar 

  9. Eggersdorfer M (2000) Terpenes. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  10. Danka R, Williams J, Rinderer T (1990) A bait station for survey and detection of honey bees. Apidologie 21:287–292

    Article  Google Scholar 

  11. Pena GA, da Costa Lopes AS, de Morais SHS, do Nascimento LD, Dos Santos FRR, da Costa KS et al (2022) Host-guest inclusion complexes of natural products and nanosystems: applications in the development of repellents. Molecules 27:2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hagberg L, Price RW, Zetterberg H, Fuchs D, Gisslén M (2020) Herpes zoster in HIV-1 infection: the role of CSF pleocytosis in secondary CSF escape and discordance. PLoS ONE 15:e0236162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stork G, Grieco P, Gregson M (1988) Allylic chlorides from allylic alcohols-geranyl chloride. Org Synth 50:638–640

    Google Scholar 

  14. Calzada JG, Hooz J (1988) Geranyl chloride. Org Synth 50:634–637

    Google Scholar 

  15. Takaya H, Ohta T, Si Inoue, Tokunaga M, Kitamura M, Noyori R (2003) Asymmetric hydrogenation of allylic alcohols using BINAP-ruthenium complexes: (S)-(−)-citronellol: 6-octen-1-ol, 3, 7-dimethyl, (S)-. Organic syntheses. John Wiley & Sons Inc, Hoboken, pp 74–74

    Chapter  Google Scholar 

  16. Piancatelli G, Leonelli F (2003) Oxidation of nerol to neral with iodosobenzene and TEMPO [(Z)-3, 7-Dimethyl-2, 6-octadienal]. Org Synth 83:18–23

    Google Scholar 

  17. Hinger S (2010) Finding the fundamental: shaping identity in gender and sexual orientation based asylum claims. Colum J Gender L 19:367

    Google Scholar 

  18. Shin HW, Jewells V, Hadar E, Fisher T, Hinn A (2014) Review of epilepsy-etiology, diagnostic evaluation and treatment. Int J Neurorehabilit 1:2376–0281

    Google Scholar 

  19. Martinc B, Grabnar I, Vovk T (2014) Antioxidants as a preventive treatment for epileptic process: a review of the current status. Curr Neuropharmacol 12:527–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carlini E (2003) Plants and the central nervous system. Pharmacol Biochem Behav 75:501–512

    Article  CAS  PubMed  Google Scholar 

  21. Almeida R, Navarro D, Barbosa-Filho J (2001) Plants with central analgesic activity. Phytomedicine 8:310–322

    Article  CAS  PubMed  Google Scholar 

  22. Nóbrega RDA, Motta SC, Leite JR (2003) Óleos essenciais com propriedades anticonvulsivantes. Bol Latinoam y del Caribe de Plantas Med y Aromát 2:3–6

    Google Scholar 

  23. de Almeida RN, Motta SC, de Brito FC, Catallani B, Leite JR (2004) Anxiolytic-like effects of rose oil inhalation on the elevated plus-maze test in rats. Pharmacol Biochem Behav 77:361–364

    Article  PubMed  Google Scholar 

  24. Kamal M, Naz M, Jawaid T, Arif M (2019) Natural products and their active principles used in the treatment of neurodegenerative diseases: a review. Orient Pharm Exp Med 19:343–365

    Article  Google Scholar 

  25. Szwajgier D, Borowiec K, Pustelniak K (2017) The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients 9:477

    Article  PubMed Central  Google Scholar 

  26. Almeida R (1999) Metodologia para avaliação de plantas com atividade no sistema nervoso central e alguns dados experimentais. Rev Bras Farm 80:72–76

    Google Scholar 

  27. Quintans-Júnior LJ, Souza T, Leite B, Lessa N, Bonjardim L, Santos M et al (2008) Phythochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents. Phytomedicine 15:619–624

    Article  PubMed  Google Scholar 

  28. Meldrum B (1981) GABA-agonists as anti-epileptic agents. Adv Biochem Psychopharmacol 26:207–217

    CAS  PubMed  Google Scholar 

  29. Gale K (1992) GABA and epilepsy: basic concepts from preclinical research. Epilepsia 33:S3-12

    CAS  PubMed  Google Scholar 

  30. Game C, Lodge D (1975) The pharmacology of the inhibition of dorsal horn neurones by impulses in myelinated cutaneous afferents in the cat. Exp Brain Res 23:75–84

    Article  CAS  PubMed  Google Scholar 

  31. McGaraughty S, Henry JL (1998) The effects of strychnine, bicuculline, and ketamine onimmersion-inhibited’dorsal horn convergent neurons in intact and spinalized rats. Brain Res 784:63–70

    Article  CAS  PubMed  Google Scholar 

  32. Blanco M, Costa C, Freire A, Santos J Jr, Costa M (2009) Neurobehavioral effect of essential oil of Cymbopogon citratus in mice. Phytomedicine 16:265–270

    Article  CAS  PubMed  Google Scholar 

  33. Silva MR, Ximenes RM, da Costa JGM, Leal LKA, de Lopes AA, de Barros Viana GS (2010) Comparative anticonvulsant activities of the essential oils (EOs) from Cymbopogon winterianus Jowitt and Cymbopogon citratus (DC) Stapf in mice. Naunyn-Schmiedeberg’s Arch Pharmacol 381:415–26

    Article  CAS  Google Scholar 

  34. Dhir A (2020) Natural polyphenols in preclinical models of epilepsy. Phytother Res 34:1268–1281

    Article  CAS  PubMed  Google Scholar 

  35. Lins LCR, Santos IMA, dos Passos Menezes P, Saraújo AA, de Souza Nunes R, dos Santos MRV et al (2014) The anticonvulsant effect of geraniol and inclusion complex geraniol: B-cyclodextrin. Bol Latinoam y del Caribe de Plantas Med y Aromát 13:557–65

    Google Scholar 

  36. Melo MS, Santana MTd, Guimarães AG, Siqueira RS, Sousa DPD, Santos R et al (2011) Bioassay-guided evaluation of central nervous system effects of citronellal in rodents. Rev Bras de Farmacogn 21:697–703

    Article  CAS  Google Scholar 

  37. Xu L, Liu M-Z, Yang Y-Y, Wang Y, Hua X-X, Du L-X et al (2022) Geraniol enhances inhibitory inputs to the paraventricular thalamic nucleus and induces sedation in mice. Phytomedicine 98:153965

    Article  CAS  PubMed  Google Scholar 

  38. Lee B, Cripps R, Fitzharris M, Wing P (2012) The global map for traumatic spinal cord injury epidemiology: expanding the online global repository: update 2011. Spinal Cord 52(2):110–116

    Article  Google Scholar 

  39. Majdan M, Brazinova A, Mauritz W (2016) Epidemiology of traumatic spinal cord injuries in Austria 2002–2012. Eur Spine J 25:62–73

    Article  PubMed  Google Scholar 

  40. Baptiste DC, Fehlings MG (2006) Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 23:318–334

    Article  PubMed  Google Scholar 

  41. Hagg T, Oudega M (2006) Neural degeneration and regeneration myelin and scar-derived inhibition. J Neurotrauma 23:264–280

    PubMed  Google Scholar 

  42. Kuo C-Y, Liou T-H, Chang K-H, Chi W-C, Escorpizo R, Yen C-F et al (2015) Functioning and disability analysis of patients with traumatic brain injury and spinal cord injury by using the world health organization disability assessment schedule 2.0. Int J Environ Res Public Health 12:4116–27

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin B, Xu Y, Zhang B, He Y, Yan Y, He MC (2014) MEK inhibition reduces glial scar formation and promotes the recovery of sensorimotor function in rats following spinal cord injury. Exp Ther Med 7:66–72

    Article  CAS  PubMed  Google Scholar 

  44. Turbes C (1997) Repair, reconstruction, regeneration and rehabilitation strategies to spinal cord injury. Biomed Sci Instrum 34:351–356

    CAS  PubMed  Google Scholar 

  45. Reichenfelser W, Hackl H, Hufgard J, Kastner J, Gstaltner K, Gföhler M (2012) Monitoring of spasticity and functional ability in individuals with incomplete spinal cord injury with a functional electrical stimulation cycling system. J Rehabil Med 44:444–449

    Article  PubMed  Google Scholar 

  46. Vuckovic A, Hasan MA, Fraser M, Conway BA, Nasseroleslami B, Allan DB (2014) Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J Pain 15:645–655

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tederko P, Krasuski M, Ptyushkin P, Selb M, Pawlak K, Skrzypczyk R et al (2013) Need for a comprehensive epidemiologic study of spinal cord injury in Poland: findings from a systematic review. Spinal cord 51:802–808

    Article  CAS  PubMed  Google Scholar 

  48. Lv Y, Zhang L, Li N, Mai N, Zhang Y, Pan S (2017) Geraniol promotes functional recovery and attenuates neuropathic pain in rats with spinal cord injury. Can J Physiol Pharmacol 95:1389–1395

    Article  CAS  PubMed  Google Scholar 

  49. Wang J, Su B, Zhu H, Chen C, Zhao G (2016) Protective effect of geraniol inhibits inflammatory response, oxidative stress and apoptosis in traumatic injury of the spinal cord through modulation of NF-κB and p38 MAPK. Exp Ther Med 12:3607–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sartorius N (2001) The economic and social burden of depression. J Clin Psychiatry 62:8–11

    PubMed  Google Scholar 

  51. Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349:1498–1504

    Article  CAS  PubMed  Google Scholar 

  52. Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A et al (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63:1209–1216

    Article  CAS  PubMed  Google Scholar 

  53. Maes M (2011) Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry 35:664–675

    Article  CAS  PubMed  Google Scholar 

  54. Kennedy SH, Andersen HF, Thase ME (2009) Escitalopram in the treatment of major depressive disorder: a meta-analysis. Curr Med Res Opin 25:161–175

    Article  CAS  PubMed  Google Scholar 

  55. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300

    Article  CAS  PubMed  Google Scholar 

  56. Lu M, Yang J-Z, Geng F, Ding J-H, Hu G (2014) Iptakalim confers an antidepressant effect in a chronic mild stress model of depression through regulating neuro-inflammation and neurogenesis. Int J Neuropsychopharmacol 17:1501–1510

    Article  CAS  PubMed  Google Scholar 

  57. Sahin C, Aricioglu F (2013) A novel aspect for depression and cytokine hypothesis:\ʹNLRP3 Inflammasome\ʹ. Clin Exp Health Sci 3:65

    CAS  Google Scholar 

  58. Deng X-Y, Xue J-S, Li H-Y, Ma Z-Q, Fu Q, Qu R et al (2015) Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model. Physiol Behav 152:264–271

    Article  CAS  PubMed  Google Scholar 

  59. Medeiros KAA, Dos Santos JR, Melo TCdS, de Souza MF, Santos LdG, de Gois AM et al (2018) Depressant effect of geraniol on the central nervous system of rats: behavior and ECoG power spectra. Biomed J 41:298–305

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kandeil MA, Gomaa SB, Mahmoud MO (2020) The effect of some natural antioxidants against cisplatin-induced neurotoxicity in rats: behavioral testing. Heliyon 6:e04708

    Article  PubMed  PubMed Central  Google Scholar 

  61. James P (1817) An essay on the shaking palsy. Sherwood Neely and Jones, London

    Google Scholar 

  62. Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:1–12

    Article  Google Scholar 

  63. Kempuraj D, Thangavel R, Natteru P, Selvakumar G, Saeed D, Zahoor H et al (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 1:1003

    PubMed  PubMed Central  Google Scholar 

  64. Büeler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    Article  PubMed  Google Scholar 

  65. Zuo L, Motherwell MS (2013) The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene 532:18–23

    Article  CAS  PubMed  Google Scholar 

  66. Moon HE, Paek SH (2015) Mitochondrial dysfunction in Parkinson’s disease. Exp neurobiol 24:103

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  CAS  PubMed  Google Scholar 

  68. Hartmann A, Hunot S, Michel PP, Muriel M-P, Vyas S, Faucheux BA et al (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97:2875–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Annals Neurol 53:S61–S72

    Article  CAS  Google Scholar 

  70. Hartmann A, Michel PP, Troadec JD, Mouatt-Prigent A, Faucheux BA, Ruberg M et al (2001) Is bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson’s disease? J Neurochem 76:1785–1793

    Article  CAS  PubMed  Google Scholar 

  71. Xiong N, Jia M, Chen C, Xiong J, Zhang Z, Huang J et al (2011) Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y. Neuroscience 199:292–302

    Article  CAS  PubMed  Google Scholar 

  72. Dodson M, Darley-Usmar V, Zhang J (2013) Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 63:207–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J (2013) Autophagy and mitophagy in cellular damage control. Redox Biol 1:19–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Braak H, Del Tredici K (2008) Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 70:1916–1925

    Article  PubMed  Google Scholar 

  76. Zhou J, Broe M, Huang Y, Anderson JP, Gai W-P, Milward EA et al (2011) Changes in the solubility and phosphorylation of α-synuclein over the course of Parkinson’s disease. Acta Neuropathol 121:695–704

    Article  CAS  PubMed  Google Scholar 

  77. Yokoyama H, Kuroiwa H, Yano R, Araki T (2008) Targeting reactive oxygen species, reactive nitrogen species and inflammation in MPTP neurotoxicity and Parkinson’s disease. Neurol Sci 29:293–301

    Article  PubMed  Google Scholar 

  78. Brooks W, Jarvis M, Wagner G (1989) Astrocytes as a primary locus for the conversion MPTP into MPP+. J Neural Transm 76:1–12

    Article  CAS  PubMed  Google Scholar 

  79. Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Mol Brain Res 134:57–66

    Article  CAS  PubMed  Google Scholar 

  80. Olanow C, Tatton W (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    Article  CAS  PubMed  Google Scholar 

  81. Przedborski S, Jackson-Lewis V (1998) Mechanisms of MPTP toxicity. Move disord 13:35–38

    Google Scholar 

  82. Przedborski S, Chen Q, Vila M, Giasson BI, Djaldatti R, Vukosavic S et al (2001) Oxidative post-translational modifications of α-synuclein in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Neurochem 76:637–640

    Article  CAS  PubMed  Google Scholar 

  83. Higgins GC, Beart PM, Shin YS, Chen MJ, Cheung NS, Nagley P (2010) Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimer’s Dis 20:S453–S473

    Article  Google Scholar 

  84. Lim K-L, Ng C-H (2009) Genetic models of Parkinson disease. Biochim et Biophys Acta (BBA)-Mol Basis of Dis 1792:604–15

    Article  CAS  Google Scholar 

  85. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27:R713–R715

    Article  CAS  PubMed  Google Scholar 

  86. Wang X, Ye X-l, Liu R, Chen H-L, Bai H, Liang X et al (2010) Antioxidant activities of oleanolic acid in vitro: possible role of Nrf2 and MAP kinases. Chemico-Biol Interact 184:328–37

    Article  CAS  Google Scholar 

  87. Rekha KR, Selvakumar GP, Sethupathy S, Santha K, Sivakamasundari RI (2013) Geraniol ameliorates the motor behavior and neurotrophic factors inadequacy in MPTP-induced mice model of Parkinson’s disease. J Mol Neurosci 51:851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luo M, Liu X, Zu Y, Fu Y, Zhang S, Yao L et al (2010) Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chemico-Biol Interact 188:151–60

    Article  CAS  Google Scholar 

  89. De Fazio L, Spisni E, Cavazza E, Strillacci A, Candela M, Centanni M et al (2016) Dietary geraniol by oral or enema administration strongly reduces dysbiosis and systemic inflammation in dextran sulfate sodium-treated mice. Front Pharmacol 7:38

    Article  PubMed  PubMed Central  Google Scholar 

  90. ChO M, So I, Chun JN, Jeon J-H (2016) The antitumor effects of geraniol: modulation of cancer hallmark pathways. Int J Oncol 48:1772–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pavan B, Dalpiaz A, Marani L, Beggiato S, Ferraro L, Canistro D et al (2018) Geraniol pharmacokinetics, bioavailability and its multiple effects on the liver antioxidant and xenobiotic-metabolizing enzymes. Front Pharmacol 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  92. de Oliveira Junior ER, Truzzi E, Ferraro L, Fogagnolo M, Pavan B, Beggiato S et al (2020) Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: towards a new approach for the management of Parkinson’s disease. J Control Release 321:540–552

    Article  PubMed  Google Scholar 

  93. Rekha KR, Sivakamasundari RI (2018) Geraniol protects against the protein and oxidative stress induced by rotenone in an in vitro model of Parkinson’s disease. Neurochem Res 43:1947–1962

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of the Neurophysiology Research Center, Hamadan University of Medical Sciences for supporting this study.

Funding

The current study was funded (IR.UMSHA.REC.1400.771) by Hamadan University of Medical Sciences, Hamadan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

SB, IS, FRA, MKA and AK reviewed the literature and drafted the manuscript. SB and AK critically revised the manuscript. All authors read and approved of the final manuscript.

Corresponding author

Correspondence to Alireza Komaki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors agree to publish the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, S., Salehi, I., Ramezani-Aliakbari, F. et al. Neuroprotective effect of geraniol on neurological disorders: a review article. Mol Biol Rep 49, 10865–10874 (2022). https://doi.org/10.1007/s11033-022-07755-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07755-w

Keywords

Navigation