Skip to main content

Advertisement

Log in

New insights into the role of fibroblast growth factors in Alzheimer’s disease

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), acknowledged as the most common progressive neurodegenerative disorder, is the leading cause of dementia in the elderly. The characteristic pathologic hallmarks of AD—including the deposition of extracellular senile plaques (SP) formation, intracellular neurofibrillary tangles, and synaptic loss, along with prominent vascular dysfunction and cognitive impairment—have been observed in patients. Fibroblast growth factors (FGFs), originally characterized as angiogenic factors, are a large family of signaling molecules that are implicated in a wide range of biological functions in brain development, maintenance and repair, as well as in the pathogenesis of brain-related disorders including AD. Many studies have focused on the implication of FGFs in AD pathophysiology. In this review, we will provide a summary of recent findings regarding the role of FGFs and their receptors in the pathogenesis of AD, and discuss the possible opportunities for targeting these molecules as novel treatment strategies in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Zhang XX et al (2021) The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prev Alzheimers Dis 8(3):313–321

    PubMed  Google Scholar 

  2. Morris JC (1997) Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr 9(Suppl 1):173–6 (discussion 177–8)

  3. Lyketsos CG et al (2003) Treating depression in Alzheimer disease: efficacy and safety of sertraline therapy, and the benefits of depression reduction: the DIADS. Arch Gen Psychiatry 60(7):737–746

    CAS  PubMed  Google Scholar 

  4. Gorevic PD et al (1986) Isolation and partial characterization of neurofibrillary tangles and amyloid plaque core in Alzheimer’s disease: immunohistological studies. J Neuropathol Exp Neurol 45(6):647–664

    CAS  PubMed  Google Scholar 

  5. Dorszewska J et al (2016) Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13(9):952–963

    CAS  PubMed  Google Scholar 

  6. Pedersen NL et al (2004) How heritable is Alzheimer’s disease late in life? Findings from Swedish twins. Ann Neurol 55(2):180–185

    PubMed  Google Scholar 

  7. Karch CM, Cruchaga C, Goate AM (2014) Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83(1):11–26

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Beach TG et al (2012) Accuracy of the clinical diagnosis of Alzheimer disease at national institute on aging Alzheimer Disease Centers, 2005–2010. J Neuropathol Exp Neurol 71(4):266–273

    PubMed  Google Scholar 

  9. Tariot PN, Federoff HJ (2003) Current treatment for Alzheimer disease and future prospects. Alzheimer Dis Assoc Disord. https://doi.org/10.1097/00002093-200307004-00003

    Article  PubMed  Google Scholar 

  10. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    CAS  PubMed  Google Scholar 

  11. DeBoer SR et al (2014) Differential release of β-amyloid from dendrite- versus axon-targeted APP. J Neurosci 34(37):12313–12327

    PubMed  PubMed Central  Google Scholar 

  12. Gómez-Isla T et al (1999) The impact of different presenilin 1 andpresenilin 2 mutations on amyloid deposition, neurofibrillary changes and neuronal loss in the familial Alzheimer’s disease brain: evidence for other phenotype-modifying factors. Brain 122(9):1709–1719

    PubMed  Google Scholar 

  13. Nistor M et al (2007) Alpha- and beta-secretase activity as a function of age and beta-amyloid in Down syndrome and normal brain. Neurobiol Aging 28(10):1493–1506

    CAS  PubMed  Google Scholar 

  14. Kimura A, Hata S, Suzuki T (2016) Alternative selection of β-site APP-cleaving enzyme 1 (BACE1) cleavage sites in amyloid β-protein precursor (APP) harboring protective and pathogenic mutations within the Aβ sequence. J Biol Chem 291(46):24041–24053

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolduc DM et al (2016) The amyloid-beta forming tripeptide cleavage mechanism of γ-secretase. eLife 5:e17578

    PubMed  PubMed Central  Google Scholar 

  16. Funke SA (2011) Detection of soluble amyloid-β oligomers and insoluble high-molecular-weight particles in CSF: development of methods with potential for diagnosis and therapy monitoring of Alzheimer’s disease. International journal of Alzheimer’s disease 2011:151645–151645

    PubMed  PubMed Central  Google Scholar 

  17. Grundke-Iqbal I et al (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83(13):4913–4917

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alonso AD et al (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 94(1):298–303

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Noble W et al (2013) The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol 4:83

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng WH et al (2002) Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115(1):201–211

    CAS  PubMed  Google Scholar 

  21. Ma QL et al (2006) Antibodies against beta-amyloid reduce Abeta oligomers, glycogen synthase kinase-3beta activation and tau phosphorylation in vivo and in vitro. J Neurosci Res 83(3):374–384

    CAS  PubMed  Google Scholar 

  22. Mairet-Coello G et al (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron 78(1):94–108

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma QL et al (2009) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29(28):9078–9089

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Utter S et al (2008) Cerebral small vessel disease-induced apolipoprotein E leakage is associated with Alzheimer disease and the accumulation of amyloid beta-protein in perivascular astrocytes. J Neuropathol Exp Neurol 67(9):842–856

    CAS  PubMed  Google Scholar 

  25. Storck SE et al (2016) Endothelial LRP1 transports amyloid-β(1–42) across the blood-brain barrier. J Clin Invest 126(1):123–136

    PubMed  Google Scholar 

  26. Miyakawa T (1997) Electron microscopy of amyloid fibrils and microvessels. Ann N Y Acad Sci 826:25–34

    CAS  PubMed  Google Scholar 

  27. Vagnucci AH, Li WW (2003) Alzheimer’s disease and angiogenesis. Lancet 361(9357):605–608

    CAS  PubMed  Google Scholar 

  28. Ruitenberg A et al (2005) Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 57(6):789–794

    PubMed  Google Scholar 

  29. Thambisetty M et al (2010) APOE epsilon4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch Neurol 67(1):93–98

    PubMed  PubMed Central  Google Scholar 

  30. Alata W et al (2015) Human apolipoprotein E ɛ4 expression impairs cerebral vascularization and blood-brain barrier function in mice. J Cereb Blood Flow Metab 35(1):86–94

    CAS  PubMed  Google Scholar 

  31. Deane R et al (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118(12):4002–4013

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Siedlak SL et al (1991) Basic fibroblast growth factor binding is a marker for extracellular neurofibrillary tangles in Alzheimer disease. J Histochem Cytochem 39(7):899–904

    CAS  PubMed  Google Scholar 

  33. Tarkowski E et al (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging 23(2):237–243

    CAS  PubMed  Google Scholar 

  34. Yun YR et al (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:218142

    PubMed  PubMed Central  Google Scholar 

  35. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235–253

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reuss B, von Bohlen und Halbach O (2003) Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 313(2):139–57

    CAS  PubMed  Google Scholar 

  37. Unsicker K, Reuss B, von Bohlen und Halbach O (2006) Fibroblast growth factors in brain functions. In: Lajtha A, Lim R (eds) Handbook of neurochemistry and molecular neurobiology: neuroactive proteins and peptides. Springer, Boston, pp 93–121

    Google Scholar 

  38. Passos-Bueno MR et al (1999) Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat 14(2):115–125

    CAS  PubMed  Google Scholar 

  39. Fon Tacer K et al (2010) Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol (Baltimore MD) 24(10):2050–2064

    Google Scholar 

  40. Schlessinger J et al (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6(3):743–750

    CAS  PubMed  Google Scholar 

  41. Sarabipour S, Hristova K (2016) Mechanism of FGF receptor dimerization and activation. Nat Commun 7:10262

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kouhara H et al (1997) A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89(5):693–702

    CAS  PubMed  Google Scholar 

  43. Peters KG et al (1992) Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 358(6388):678–681

    CAS  PubMed  Google Scholar 

  44. Hart KC et al (2000) Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19(29):3309–3320

    CAS  PubMed  Google Scholar 

  45. Gotoh N (2008) Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99(7):1319–1325

    CAS  PubMed  Google Scholar 

  46. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2):139–149

    CAS  PubMed  Google Scholar 

  47. Reilly JF, Maher PA (2001) Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 152(6):1307–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng Y, Black IB, DiCicco-Bloom E (2002) Hippocampal granule neuron production and population size are regulated by levels of bFGF. Eur J Neurosci 15(1):3–12

    PubMed  Google Scholar 

  49. Kuhn HG et al (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17(15):5820–5829

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gritti A et al (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16(3):1091–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gage FH et al (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 92(25):11879–11883

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Szebenyi G et al (2001) Fibroblast growth factor-2 promotes axon branching of cortical neurons by influencing morphology and behavior of the primary growth cone. J Neurosci 21(11):3932–3941

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao M et al (2007) Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol Psychiatry 62(5):381–390

    CAS  PubMed  Google Scholar 

  54. Terauchi A et al (2010) Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 465(7299):783–787

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu QF et al (2012) Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. Cell 149(7):1549–1564

    CAS  PubMed  Google Scholar 

  56. Puranam RS et al (2015) Disruption of Fgf13 causes synaptic excitatory-inhibitory imbalance and genetic epilepsy and febrile seizures plus. J Neurosci 35(23):8866–8881

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Boshoff EL, Fletcher EJR, Duty S (2018) Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner. Neuropharmacology 137:156–163

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang W et al (2019) Fibroblast growth factor 21 enhances angiogenesis and wound healing of human brain microvascular endothelial cells by activating PPARγ. J Pharmacol Sci 140(2):120–127

    CAS  PubMed  Google Scholar 

  59. Auguste P et al (2001) Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Can Res 61(4):1717

    CAS  Google Scholar 

  60. Sarchielli P et al (2008) Fibroblast growth factor-2 levels are elevated in the cerebrospinal fluid of multiple sclerosis patients. Neurosci Lett 435(3):223–228

    CAS  PubMed  Google Scholar 

  61. Yusuf IO et al (2018) Fibroblast growth factor 9 suppresses striatal cell death dominantly through ERK signaling in Huntington’s disease. Cell Physiol Biochem 48(2):605–617

    CAS  PubMed  Google Scholar 

  62. Kefalakes E et al (2019) Characterizing the multiple roles of FGF-2 in SOD1(G93A) ALS mice in vivo and in vitro. J Cell Physiol 234(5):7395–7410

    CAS  PubMed  Google Scholar 

  63. Engele J, Bohn MC (1992) Effects of acidic and basic fibroblast growth factors (aFGF, bFGF) on glial precursor cell proliferation: age dependency and brain region specificity. Dev Biol 152(2):363–372

    CAS  PubMed  Google Scholar 

  64. Oomura Y et al (1995) Acidic fibroblast growth factor protects memory and immunoreactivity impairment in senescence accelerated mice. Neurobiology (Bp) 3(3–4):371–380

    CAS  Google Scholar 

  65. Sasaki K et al (1994) Acidic fibroblast growth factor facilitates generation of long-term potentiation in rat hippocampal slices. Brain Res Bull 33(5):505–511

    CAS  PubMed  Google Scholar 

  66. Bean AJ et al (1991) Expression of acidic and basic fibroblast growth factors in the substantia nigra of rat, monkey, and human. Proc Natl Acad Sci U S A 88(22):10237–10241

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bizon JL et al (1996) Acidic fibroblast growth factor mRNA is expressed by basal forebrain and striatal cholinergic neurons. J Comp Neurol 366(3):379–389

    CAS  PubMed  Google Scholar 

  68. Faucheux BA et al (1992) Glial cell localization of acidic fibroblast growth factor-like immunoreactivity in the optic nerve of young adult and aged mammals. Gerontology 38(6):308–314

    CAS  PubMed  Google Scholar 

  69. Tooyama I et al (1991) Acidic fibroblast growth factor-like immunoreactivity in brain of Alzheimer patients. Neurosci Lett 121(1–2):155–158

    CAS  PubMed  Google Scholar 

  70. Mashayekhi F et al (2010) Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with Alzheimer’s disease. J Clin Neurosci 17(3):357–359

    CAS  PubMed  Google Scholar 

  71. Thorns V, Masliah E (1999) Evidence for neuroprotective effects of acidic fibroblast growth factor in Alzheimer disease. J Neuropathol Exp Neurol 58(3):296–306

    CAS  PubMed  Google Scholar 

  72. Hashimoto M et al (2002) Fibroblast growth factor 1 regulates signaling via the glycogen synthase kinase-3beta pathway. Implications for neuroprotection. J Biol Chem 277(36):32985–32991

    CAS  PubMed  Google Scholar 

  73. Cao Q et al (2019) aFGF promotes neurite growth by regulating GSK3β-CRMP2 signaling pathway in cortical neurons damaged by amyloid-β. J Alzheimers Dis 72(1):97–109

    CAS  PubMed  Google Scholar 

  74. Thorns V, Licastro F, Masliah E (2001) Locally reduced levels of acidic FGF lead to decreased expression of 28-kda calbindin and contribute to the selective vulnerability of the neurons in the entorhinal cortex in Alzheimer’s disease. Neuropathology 21(3):203–211

    CAS  PubMed  Google Scholar 

  75. Lee M et al (2011) Acidic fibroblast growth factor (FGF) potentiates glial-mediated neurotoxicity by activating FGFR2 IIIb protein. J Biol Chem 286(48):41230–41245

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yamagata H et al (2004) Promoter polymorphism in fibroblast growth factor 1 gene increases risk of definite Alzheimer’s disease. Biochem Biophys Res Commun 321(2):320–323

    CAS  PubMed  Google Scholar 

  77. Bian JT et al (2010) No association of the C>T polymorphism that is located 1385 upstream from initial code of fibroblast growth factor 1 gene with Alzheimer’s disease in Chinese. Brain Res 1328:113–117

    CAS  PubMed  Google Scholar 

  78. Chang YT et al (2019) Genetic interaction of APOE and FGF1 is associated with memory impairment and hippocampal atrophy in Alzheimer’s disease. Aging Dis 10(3):510–519

    PubMed  PubMed Central  Google Scholar 

  79. Hanneken A et al (1995) A fibroblast growth factor binding protein in human cerebral spinal fluid. NeuroReport 6(6):886–888

    CAS  PubMed  Google Scholar 

  80. Kole D et al (2017) High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal. Stem Cell Research 21:106–116

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Silva A et al (2000) Growth factor effects on survival and development of calbindin immunopositive cultured septal neurons. Brain Res Bull 51(1):35–42

    CAS  PubMed  Google Scholar 

  82. Noshita T et al (2012) Effect of bFGF on neuronal damage induced by sequential treatment of amyloid β and excitatory amino acid in vitro and in vivo. Eur J Pharmacol 695(1–3):76–82

    CAS  PubMed  Google Scholar 

  83. Mark RJ et al (1997) Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res 756(1–2):205–214

    CAS  PubMed  Google Scholar 

  84. Guo ZH, Mattson MP (2000) Neurotrophic factors protect cortical synaptic terminals against amyloid and oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function. Cereb Cortex 10(1):50–57

    CAS  PubMed  Google Scholar 

  85. Guo Q et al (1999) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc Natl Acad Sci USA 96(7):4125–4130

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gray CW, Patel AJ (1995) Neurodegeneration mediated by glutamate and beta-amyloid peptide: a comparison and possible interaction. Brain Res 691(1–2):169–179

    CAS  PubMed  Google Scholar 

  87. Baskin F et al (1997) Altered apolipoprotein E secretion in cytokine treated human astrocyte cultures. J Neurol Sci 148(1):15–18

    CAS  PubMed  Google Scholar 

  88. White AR et al (1998) Survival of cultured neurons from amyloid precursor protein knock-out mice against Alzheimer’s amyloid-beta toxicity and oxidative stress. J Neurosci 18(16):6207–6217

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mattson MP, Tomaselli KJ, Rydel RE (1993) Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res 621(1):35–49

    CAS  PubMed  Google Scholar 

  90. Gómez-Pinilla F, Cummings BJ, Cotman CW (1990) Induction of basic fibroblast growth factor in Alzheimer’s disease pathology. NeuroReport 1(3–4):211–214

    PubMed  Google Scholar 

  91. Villa A, Latasa MJ, Pascual A (2001) Nerve growth factor modulates the expression and secretion of beta-amyloid precursor protein through different mechanisms in PC12 cells. J Neurochem 77(4):1077–1084

    CAS  PubMed  Google Scholar 

  92. Quon D, Catalano R, Cordell B (1990) Fibroblast growth factor induces beta-amyloid precursor mRNA in glial but not neuronal cultured cells. Biochem Biophys Res Commun 167(1):96–102

    CAS  PubMed  Google Scholar 

  93. Lahiri DK, Nall C (1995) Promoter activity of the gene encoding the beta-amyloid precursor protein is up-regulated by growth factors, phorbol ester, retinoic acid and interleukin-1. Brain Res Mol Brain Res 32(2):233–240

    CAS  PubMed  Google Scholar 

  94. Gray CW, Patel AJ (1993) Induction of beta-amyloid precursor protein isoform mRNAs by bFGF in astrocytes. NeuroReport 4(6):811–814

    CAS  PubMed  Google Scholar 

  95. Cosgaya JM, Latasa MJ, Pascual A (1996) Nerve growth factor and ras regulate beta-amyloid precursor protein gene expression in PC12 cells. J Neurochem 67(1):98–104

    CAS  PubMed  Google Scholar 

  96. Ringheim GE et al (1996) Transcriptional inhibition of the beta-amyloid precursor protein by interferon-gamma. Biochem Biophys Res Commun 224(1):246–251

    CAS  PubMed  Google Scholar 

  97. Chen H et al (2007) Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis. Neurobiol Aging 28(8):1148–1162

    CAS  PubMed  Google Scholar 

  98. Emmett CJ et al (1995) Dose-response comparison of recombinant human nerve growth factor and recombinant human basic fibroblast growth factor in the fimbria fornix model of acute cholinergic degeneration. Brain Res 673(2):199–207

    CAS  PubMed  Google Scholar 

  99. Cantara S et al (2004) Physiological levels of amyloid peptides stimulate the angiogenic response through FGF-2. Faseb j 18(15):1943–1945

    CAS  PubMed  Google Scholar 

  100. Tatebayashi Y et al (2003) The dentate gyrus neurogenesis: a therapeutic target for Alzheimer’s disease. Acta Neuropathol 105(3):225–232

    CAS  PubMed  Google Scholar 

  101. Tatebayashi Y, Iqbal K, Grundke-Iqbal I (1999) Dynamic regulation of expression and phosphorylation of tau by fibroblast growth factor-2 in neural progenitor cells from adult rat hippocampus. J Neurosci 19(13):5245–5254

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Grundke-Iqbal I et al (2004) Neurogenesis: a promising therapeutic target for alzheimer disease and related disorders. In: Takeda M, Tanaka T, Cacabelos R (eds) molecular neurobiology of alzheimer disease and related disorders. Karger, Basel, pp 172–182

    Google Scholar 

  103. Tsukamoto E et al (2003) Characterization of the toxic mechanism triggered by Alzheimer’s amyloid-beta peptides via p75 neurotrophin receptor in neuronal hybrid cells. J Neurosci Res 73(5):627–636

    CAS  PubMed  Google Scholar 

  104. Stopa EG et al (2001) Human choroid plexus growth factors: What are the implications for CSF dynamics in Alzheimer’s disease? Exp Neurol 167(1):40–47

    CAS  PubMed  Google Scholar 

  105. Taipa R et al (2019) Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline. Neurobiol Aging 76:125–132

    CAS  PubMed  Google Scholar 

  106. Katsouri L et al (2015) Systemic administration of fibroblast growth factor-2 (FGF2) reduces BACE1 expression and amyloid pathology in APP23 mice. Neurobiol Aging 36(2):821–831

    CAS  PubMed  Google Scholar 

  107. Huang S et al (2017) Polysaccharides from Ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s Disease. Stem Cell Reports 8(1):84–94

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Assis-Nascimento P et al (2007) Beta-amyloid toxicity in embryonic rat astrocytes. Neurochem Res 32(9):1476–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen X et al (2019) Low and high molecular weight FGF-2 have differential effects on astrocyte proliferation, but are both protective against Aβ-induced cytotoxicity. Front Mol Neurosci 12:328

    CAS  PubMed  Google Scholar 

  110. Cheng B, Mattson MP (1992) Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampal neurons: prevention by NGF and bFGF. Exp Neurol 117(2):114–123

    CAS  PubMed  Google Scholar 

  111. Sandhu FA et al (1996) Expression of the C terminus of the amyloid precursor protein alters growth factor responsiveness in stably transfected PC12 cells. Proc Natl Acad Sci U S A 93(5):2180–2185

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kiyota T et al (2011) FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer’s disease and has therapeutic implications for neurocognitive disorders. Proc Natl Acad Sci USA 108(49):E1339–E1348

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang C et al (2014) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 461(1–2):192–202

    CAS  PubMed  Google Scholar 

  114. Chen S et al (2016) FGF2 shows therapeutic effects in Alzheimer’s disease animal model via suppressing PI3K/Akt mediated ER stress. Int J Clin Exp Med 9:2130–2138

    CAS  Google Scholar 

  115. Hanson LR, Frey WH 2nd (2008) Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 9(Suppl 3):S5

    PubMed  PubMed Central  Google Scholar 

  116. Feng C et al (2012) Enhancement of nose-to-brain delivery of basic fibroblast growth factor for improving rat memory impairments induced by co-injection of β-amyloid and ibotenic acid into the bilateral hippocampus. Int J Pharm 423(2):226–234

    CAS  PubMed  Google Scholar 

  117. Moussa C et al (2017) Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflamm 14(1):1

    Google Scholar 

  118. Fon Tacer K et al (2010) Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24(10):2050–2064

    PubMed  PubMed Central  Google Scholar 

  119. Yamamoto H et al (2000) Detection of spatial localization of Hst-1/Fgf-4 gene expression in brain and testis from adult mice. Oncogene 19(33):3805–3810

    CAS  PubMed  Google Scholar 

  120. Feng GD et al (2014) Fibroblast growth factor 4 is required but not sufficient for the astrocyte dedifferentiation. Mol Neurobiol 50(3):997–1012

    CAS  PubMed  Google Scholar 

  121. Kosaka N et al (2006) FGF-4 regulates neural progenitor cell proliferation and neuronal differentiation. Faseb j 20(9):1484–1485

    CAS  PubMed  Google Scholar 

  122. Lehallier B et al (2016) Combined plasma and cerebrospinal fluid signature for the prediction of midterm progression from mild cognitive impairment to Alzheimer disease. JAMA Neurol 73(2):203–212

    PubMed  Google Scholar 

  123. Miyamoto M et al (1993) Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol 13(7):4251–4259

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Todo T et al (1998) Neuronal localization of fibroblast growth factor-9 immunoreactivity in human and rat brain. Brain Res 783(2):179–187

    CAS  PubMed  Google Scholar 

  125. Hecht D et al (1995) Identification of fibroblast growth factor 9 (FGF9) as a high affinity, heparin dependent ligand for FGF receptors 3 and 2 but not for FGF receptors 1 and 4. Growth Factors 12(3):223–233

    CAS  PubMed  Google Scholar 

  126. Santos-Ocampo S et al (1996) Expression and biological activity of mouse fibroblast growth factor-9. J Biol Chem 271(3):1726–1731

    CAS  PubMed  Google Scholar 

  127. Lum M et al (2009) Fibroblast growth factor-9 inhibits astrocyte differentiation of adult mouse neural progenitor cells. J Neurosci Res 87(10):2201–2210

    CAS  PubMed  Google Scholar 

  128. Nakamura S et al (1998) Fibroblast growth factor (FGF)-9 immunoreactivity in senile plaques. Brain Res 814(1–2):222–225

    CAS  PubMed  Google Scholar 

  129. Kanda T et al (2000) Self-secretion of fibroblast growth factor-9 supports basal forebrain cholinergic neurons in an autocrine/paracrine manner. Brain Res 876(1–2):22–30

    CAS  PubMed  Google Scholar 

  130. Lou JY et al (2005) Fibroblast growth factor 14 is an intracellular modulator of voltage-gated sodium channels. J Physiol 569(Pt 1):179–193

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wozniak DF et al (2007) Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14. Neurobiol Dis 26(1):14–26

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Di Re J, Wadsworth PA, Laezza F (2017) Intracellular fibroblast growth factor 14: emerging risk factor for brain disorders. Front Cell Neurosci 11:103

    PubMed  PubMed Central  Google Scholar 

  133. Yang T et al (2015) Detecting genetic risk factors for Alzheimer’s disease in whole genome sequence data via lasso screening. Proc IEEE Int Symp Biomed Imaging 2015:985–989

    PubMed  PubMed Central  Google Scholar 

  134. Hsu WJ et al (2017) PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer’s disease. Exp Neurol 295:1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Nishimura T et al (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492(1):203–206

    CAS  PubMed  Google Scholar 

  136. Hansen JS et al (2015) Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol Metab 4(8):551–560

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mäkelä J et al (2014) Fibroblast growth factor-21 enhances mitochondrial functions and increases the activity of PGC-1α in human dopaminergic neurons via Sirtuin-1. Springerplus 3:2

    PubMed  PubMed Central  Google Scholar 

  138. Min X et al (2018) Agonistic β-Klotho antibody mimics fibroblast growth factor 21 (FGF21) functions. J Biol Chem 293(38):14678–14688

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu Y et al (2015) Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol Biochem Behav 133:122–131

    CAS  PubMed  Google Scholar 

  140. Conte M et al (2021) Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer’s disease in comparison with healthy aging. Geroscience 43(2):985–1001

    CAS  PubMed  Google Scholar 

  141. Amiri M, Braidy N, Aminzadeh M (2018) Protective effects of fibroblast growth factor 21 against amyloid-beta(1–42)-induced toxicity in SH-SY5Y cells. Neurotox Res 34(3):574–583

    CAS  PubMed  Google Scholar 

  142. Kang K et al (2020) FGF21 attenuates neurodegeneration through modulating neuroinflammation and oxidant-stress. Biomed Pharmacother 129:110439

    CAS  PubMed  Google Scholar 

  143. Chen S et al (2019) Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer’s disease. Redox Biol 22:101133

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sun Y et al (2020) Modulation of the astrocyte-neuron lactate shuttle system contributes to neuroprotective action of fibroblast growth factor 21. Theranostics 10(18):8430–8445

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Rühlmann C et al (2021) Neuroprotective Effects of the FGF21 Analogue LY2405319. J Alzheimers Dis 80(1):357–369

    PubMed  Google Scholar 

  146. Rühlmann C et al (2016) Long-term caloric restriction in ApoE-deficient mice results in neuroprotection via Fgf21-induced AMPK/mTOR pathway. Aging (Albany NY) 8(11):2777–2789

    Google Scholar 

  147. Tournissac M et al (2019) Repeated cold exposures protect a mouse model of Alzheimer’s disease against cold-induced tau phosphorylation. Mol Metab 22:110–120

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277(2):494–498

    CAS  PubMed  Google Scholar 

  149. Kunert SK et al (2017) Klotho and fibroblast growth factor 23 in cerebrospinal fluid in children. J Bone Miner Metab 35(2):215–226

    CAS  PubMed  Google Scholar 

  150. Kurosu H et al (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281(10):6120–6123

    CAS  PubMed  Google Scholar 

  151. Laszczyk AM et al (2019) FGF-23 deficiency impairs hippocampal-dependent cognitive function. eNeuro. https://doi.org/10.1523/ENEURO.0469-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  152. Liu P et al (2011) Impairment of spatial learning and memory in transgenic mice overexpressing human fibroblast growth factor-23. Brain Res 1412:9–17

    CAS  PubMed  Google Scholar 

  153. McGrath ER et al (2019) Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study. PLoS ONE 14(3):e0213321

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ferrer I, Martí E (1998) Distribution of fibroblast growth factor receptor-1 (FGFR-1) and FGFR-3 in the hippocampus of patients with Alzheimer’s disease. Neurosci Lett 240(3):139–142

    CAS  PubMed  Google Scholar 

  155. Takami K et al (1998) Fibroblast growth factor receptor-1 expression in the cortex and hippocampus in Alzheimer’s disease. Brain Res 802(1–2):89–97

    CAS  PubMed  Google Scholar 

  156. Di Liberto V et al (2017) Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures. Biochim Biophys Acta Gen Subj 1861(2):235–245

    PubMed  Google Scholar 

  157. Borroto-Escuela DO et al (2013) G protein-coupled receptor heterodimerization in the brain. Methods Enzymol 521:281–294

    CAS  PubMed  Google Scholar 

  158. Francavilla C et al (2009) The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking. J Cell Biol 187(7):1101–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Murayama N et al (2013) SUN11602, a novel aniline compound, mimics the neuroprotective mechanisms of basic fibroblast growth factor. ACS Chem Neurosci 4(2):266–276

    CAS  PubMed  Google Scholar 

  160. Burgess A et al (2009) Stimulation of choline acetyltransferase by C3d, a neural cell adhesion molecule ligand. J Neurosci Res 87(3):609–616

    CAS  PubMed  Google Scholar 

  161. Klementiev B et al (2007) A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25–35. Neuroscience 145(1):209–224

    CAS  PubMed  Google Scholar 

  162. Enevoldsen MN et al (2012) Neuroprotective and memory enhancing properties of a dual agonist of the FGF receptor and NCAM. Neurobiol Dis 48(3):533–545

    CAS  PubMed  Google Scholar 

  163. Neiiendam JL et al (2004) An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 91(4):920–935

    CAS  PubMed  Google Scholar 

  164. Makani V et al (2016) BBB-permeable, neuroprotective, and neurotrophic polysaccharide, midi-GAGR. PLoS ONE 11(3):e0149715

    PubMed  PubMed Central  Google Scholar 

  165. Murphy K et al (2018) Mini-GAGR, an intranasally applied polysaccharide, activates the neuronal Nrf2-mediated antioxidant defense system. J Biol Chem 293(47):18242–18269

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bogousslavsky J et al (2002) Fiblast (trafermin) in acute stroke: results of the European-Australian phase II/III safety and efficacy trial. Cerebrovasc Dis 14(3–4):239–251

    CAS  PubMed  Google Scholar 

  167. Klimaschewski L, Claus P (2021) fibroblast growth factor signalling in the diseased nervous system. Mol Neurobiol 58(8):3884–3902

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not funded.

Author information

Authors and Affiliations

Authors

Contributions

SN conceived the concept and idea of the present review. RA, YM, HH, ZS, HFB, HH, and SN worked on the study design strategy and selected the topics to be discussed. RA, HH, YM and ZS did literature searches and screened titles and abstracts for relevance. RA, HH, YM and ZS abstracted the data from the eligible full text articles, analyzed and interpreted the data, and drafted the manuscript. YF, and EE revised the final draft of the manuscript. HFB, HH and SN critically revised the manuscript with input from the entire team. All authors have read and approved the final draft.

Corresponding authors

Correspondence to Hayat Harati or Sanaa Nabha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, R., Mrad, Y., Hammoud, H. et al. New insights into the role of fibroblast growth factors in Alzheimer’s disease. Mol Biol Rep 49, 1413–1427 (2022). https://doi.org/10.1007/s11033-021-06890-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06890-0

Keywords

Navigation