Skip to main content
Log in

Green algae (Viridiplantae) in sediments from three lakes on Vega Island, Antarctica, assessed using DNA metabarcoding

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes).

Methods and results

Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification. Green algae were represented by sequences representing 78 taxa belonging to Phylum Chlorophyta, of which 32% have not previously been recorded from Antarctica. Sediment from Pan Negro Lake generated the highest number of DNA reads (11,205), followed by Esmeralda (9085) and Copépodo (1595) Lakes. Esmeralda Lake was the richest in terms of number of taxa (59), with Copépodo and Pan Negro Lakes having 30 taxa each. Bray–Curtis dissimilarity among lakes was high (~ 0.80). The Order Chlamydomonadales (Chlorophyceae) gave the highest contribution in terms of numbers of taxa and DNA reads in all lakes. The most abundant taxon was Chlorococcum microstigmatum.

Conclusions

The study confirms the utility of DNA metabarcoding in assessing potential green algal diversity in Antarctic lakes, generating new Antarctic records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data generated or analysed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Píšková A, Roman M, Bulínová M et al (2019) Late-Holocene palaeoenvironmental changes at Lake Esmeralda (Vega Island, Antarctic Peninsula) based on a multi-proxy analysis of laminated lake sediment. Holocene 29(7):1155–1175. https://doi.org/10.1177/0959683619838033

    Article  Google Scholar 

  2. Vincent WF, Vincent CL (1982) Response to nutrient enrichment by the plankton of Antarctic coastal lakes and the inshore Ross Sea. Polar Biol 1:159–165

    Article  Google Scholar 

  3. Vinocur A, Unrein F (2000) Typology of lentic water bodies at Potter Peninsula (King George Island, Antarctica) based on physical-chemical characteristics and phytoplankton communities. Polar Biol 23:858–870. https://doi.org/10.1007/s003000000165

    Article  Google Scholar 

  4. Vinocur A, Izaguirre I (1994) Freshwater algae (excluding Cyanophyceae) from nine lakes and pools of Hope Bay, Antarctica Peninsula. Antarct Sci 6(4):483–489. https://doi.org/10.1017/S0954102094000738

    Article  Google Scholar 

  5. Vinocur A, Pizarro H (1995) Periphyton flora of some lotic and lentic environments of Hope Bay (Antarctic Peninsula). Polar Biol 15:401–414. https://doi.org/10.1007/BF00239716

    Article  Google Scholar 

  6. Vinocur A, Pizarro H (2000) Microbial mats of twenty-six lakes from Potter Peninsula, King George Island, Antarctica. Hydrobiologia 437:171–185. https://doi.org/10.1023/A:1026511125146

    Article  Google Scholar 

  7. Izaguirre I, Allende L, Schiaffino MR (2020) Phytoplankton in Antarctic lakes: biodiversity and main ecological features. Hydrobiologia 847:1–31

    Article  Google Scholar 

  8. De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc B 276:3591–3599. https://doi.org/10.1098/rspb.2009.0994

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chaparro MAE, Chaparro MAE, Córdoba FE, Lecomte KL, Gargiulo JD, Barrios AM, Urán JM, Czalbowski NTM, Lavat A, Böhnel HN (2017) Sedimentary analysis and magnetic properties of Lake Anónima, Vega Island. Antarct Sci 29:429–444. https://doi.org/10.1017/S0954102017000116

    Article  Google Scholar 

  10. Bulínová M, Kohler TJ, Kavan J, Van de Vijver B, Nývlt D, Nedbalová L, Coria SH, Lirio JM, Kopalová K (2020) Comparison of diatom paleo-assemblages with adjacent limno-terrestrial communities on Vega Island, Antarctic Peninsula. Water 12:1340. https://doi.org/10.3390/w12051340

    Article  Google Scholar 

  11. Ogaki MB, Câmara PEAS, Pinto OHB, Lirio JM, Coria SH, Vieira E, Carvalho-Silva M, Convey P, Rosa CA, Rosa LH (2021) Diversity of fungal DNA in lake sediments on Vega Island, north-east Antarctic Peninsula assessed using DNA metabarcoding. Extremophiles 25:257–265. https://doi.org/10.1007/s00792-021-01226-z

    Article  CAS  PubMed  Google Scholar 

  12. Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46. https://doi.org/10.1080/07352689.2011.615705

    Article  Google Scholar 

  13. Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes: models for evolution. Philos T R Soc B 362:2273–2289. https://doi.org/10.1098/rstb.2006.1945

    Article  CAS  Google Scholar 

  14. Convey P, Biersma EM, Casanova-Katny A, Maturana CS (2020) Refuges of Antarctic diversity. In: Oliva J, Ruiz-Fernández J (eds) Past Antarctica. Academic Press, Burlington, pp 181–200. https://doi.org/10.1016/B978-0-12-817925-3.00010-0

    Chapter  Google Scholar 

  15. Verleyen E, Van de Vijver B, Tytgat B et al (2021) Diatoms define a novel freshwater biogeography of the Antarctic. Ecography 44:548–560. https://doi.org/10.1111/ecog.05374

    Article  Google Scholar 

  16. Davey MP, Norman L, Sterk P et al (2019) Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytol 222:1242–1255. https://doi.org/10.1111/nph.15701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peng Z, Liu G, Huang K (2021) Cold adaptation mechanisms of a snow alga Chlamydomonas nivalis during temperature fluctuations. Front Microbiol 11:611080. https://doi.org/10.3389/fmicb.2020.611080

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chae H, Lim S, Kim HS, Choi H-G, Kim JH (2019) Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica. Algae 34(4):267–275. https://doi.org/10.4490/algae.2019.34.10.15

    Article  Google Scholar 

  19. Pocock T, Lachance M-A, Pröschold T, Priscu JC, Kim SS, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO241) Chlorophyceae. J Phycol 40:1138–1148. https://doi.org/10.1111/j.1529-8817.2004.04060.x

    Article  Google Scholar 

  20. Zhang X, Cvetkovska M, Morgan-Kiss R, Hüner NPA, Smith DR (2021) Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241. IScience 24(2):102084. https://doi.org/10.1016/j.isci.2021.102084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gray A, Fretwell P, Smith AG, Convey P, Peck LS, Krolikowski M, Mendelova M, Davey MP (2020) Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat Commun. https://doi.org/10.1038/s41467-020-16018-w

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lutz S, Anesio AM, Raiswell R, Edward A, Newton RJ, Gill F, Benning LG (2016) The biogeography of red snow microbiomes and their role in melting Arctic glaciers. Nat Commun 7:11968. https://doi.org/10.1038/ncomms11968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Câmara PEAS, Carvalho-Silva M, Pinto OHB, Amorim ET, Henriques DK, Silva TH, Pellizzari F, Convey P, Rosa LH (2021) Diversity and ecology of Chlorophyta (Viridiplantae) assemblages in protected and non-protected sites in Deception Island (Antarctica, South Shetland Islands) assessed using an NGS approach. Microb Ecol 81:323–334. https://doi.org/10.1007/s00248-020-01584-9

    Article  CAS  PubMed  Google Scholar 

  24. Taş N, Jong AEE, Li Y, Trubl G, Xue Y, Dove NC (2021) Metagenomic tools in microbial ecology research. Curr Opin Biotechnol 67:184–191

    Article  PubMed  Google Scholar 

  25. Rippin M, Borchhardt N, Williams L, Colesie C, Jung P, Büdel B, Karsten U, Becker B (2018) Genus richness of microalgae and cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol 41:909–923. https://doi.org/10.1007/s00300-018-2252-2

    Article  Google Scholar 

  26. Fraser CI, Connell L, Lee CK, Cary SC (2018) Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica. Polar Biol 41:417–421. https://doi.org/10.1007/s00300-017-2198-9

    Article  Google Scholar 

  27. Garrido-Benavent I, Pérez-Ortega S, Durán J, Ascaso C, Pointing SB, Rodríguez-Cielos R, Navarro F, de los Ríos A (2020) Differential colonization and succession of microbial communities in rock and soil substrates on a maritime Antarctic glacier forefield. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00126

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huss V, Frank C, Hartmann EC, Hirmer M (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35(3):587–598. https://doi.org/10.1046/j.1529-8817.1999.3530587.x

    Article  CAS  Google Scholar 

  29. Ruppert K, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 17:1–29. https://doi.org/10.1016/j.gecco.2019.e00547

    Article  Google Scholar 

  30. Van Lipzig NPM, King JC, Lachlan-Cope TA (2004) Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. J Geophys Res 109:D24106

    Article  Google Scholar 

  31. Hrbáček F, Nývlt D, Láska K (2017) Active layer thermal dynamics at two lithologically different sites on James Ross Island, Eastern Antarctic Peninsula. CATENA 149:592–602

    Article  Google Scholar 

  32. Hadi SIIA, Santana H, Brunale PPM, Gomes TG, Oliveira MD, Matthiensen A, Oliveira MEC, Silva FCP, Brasil BSAF (2016) DNA barcoding green microalgae isolated from Neotropical inland waters. PLoS ONE 11(2):e0149284. https://doi.org/10.1371/journal.pone.0149284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, London, pp 515–322

    Google Scholar 

  34. Banchi E, Ametrano CG, Greco S, Stanković D, Muggia L, Pallavicini A (2020) PLANiTS: a curated sequence reference dataset for plant ITS DNA metabarcoding. Database. https://doi.org/10.1093/database/baz155

    Article  PubMed  PubMed Central  Google Scholar 

  35. Joshi NA, Fass JN (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle. https://doi.org/10.1080/0028825X.1968.10428810.

  36. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open-source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10(1):57–59. https://doi.org/10.1038/nmeth.2276

    Article  CAS  PubMed  Google Scholar 

  39. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Boylern E, Knight R, Huttley GA, Caporaso JG (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90–107. https://doi.org/10.1186/s40168-018-0470-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Giner CR, Forn I, Romac S, Logares RC, Massana R (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol 82:4757–4766. https://doi.org/10.1128/AEM.00560-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Darling JA, Mahon AR (2011) From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ Res 111:978–988. https://doi.org/10.1016/j.envres.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  42. Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed 01 Jan 2021

  43. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  44. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210X.12613

    Article  Google Scholar 

  45. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform 15:293. https://doi.org/10.1186/1471-2105-15-293

    Article  Google Scholar 

  46. Hoham RW, Mullet JE (1978) Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga, Scotiella. Phycologia 17(1):106–107

    Article  Google Scholar 

  47. Kováčik L, Pereira AB (2001) Green alga Prasiola crispa and its lichenized form Mastodia tesselata in Antarctic environment: general aspects. Nova Hedwigia 123:465–478

    Google Scholar 

  48. Remias D, Procházková L, Holzinger A, Nedbalová L (2018) Ecology, cytology and phylogeny of the snow alga Scotiella cryophila K-1 (Chlamydomonadales, Chlorophyta) from the Austrian Alps. Phycologia 57(5):581–592. https://doi.org/10.2216/18-45.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sabbe K, Hodgson DA, Verleyen E, Taton A, Wilmotte A, Vanhoutte K, Vyverman W (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw Biol 49:296–319. https://doi.org/10.1111/j.1365-2427.2004.01186.x

    Article  Google Scholar 

  50. Buchheim MA, Lemieux C, Otis C, Gutell RR, Chapman RL, Turmel M (1996) Phylogeny of the Chlamydomonadales (Chlorophyceae): a comparison of ribosomal RNA gene sequences. Mol Phylogenet Evol 5(2):391–402

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study received financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Programa Antártico Brasileiro (PROANTAR), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Institutos Nacionais de Ciência e Tecnologia (INCT) Criosfera 2. P. Convey is supported by Natural Environment Research Council (NERC) core funding to the British Antarctic Survey (BAS) ‘Biodiversity, Evolution and Adaptation’ Team. Thanks also to congresswoman Jô Moraes, to Instituto de Ciências Biológicas da Universidade de Brasília and to the Brazilian Navy and Air Force. We thank the Instituto Antártico Argentino for the logistical and financial support of the Antarctic campaign to Vega Island and to the Lagos Field Group.

Funding

National Council for Scientific and Technological Development (CNPq), Brazilian Antarctic Program (PROANTAR), Research Foundation of the State of Minas Gerais (FAPEMIG), Coordination for the Improvement of Higher Education Personnel (CAPES), National Institutes of Science and Technology (INCT) Criosfera 2, Natural Environment Research Council (NERC) core funding to the British Antarctic Survey (BAS) ‘Biodiversity, Evolution and Adaptation’ Team.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Paulo Eduardo Aguiar Saraiva Câmara, Mayara Baptistucci Ogaki, Otávio Henrique Bezerra Pinto, Juan Manuel Lirio, Silvia H. Coria, Rosemary Vieira, Micheline Carvalho-Silva, Eduardo Toledo Amorim, Peter Convey, Luiz Henrique Rosa and Bárbara Medeiros Fonseca. The first draft of the manuscript was written by Bárbara Medeiros Fonseca and Paulo Eduardo Aguiar Saraiva Câmara and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bárbara Medeiros Fonseca.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors gave their consent to participate.

Consent for publication

All authors gave their consent for publication.

Research involved humans and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1284 kb)

Supplementary file2 (DOCX 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, B.M., Câmara, P.E.A.S., Ogaki, M.B. et al. Green algae (Viridiplantae) in sediments from three lakes on Vega Island, Antarctica, assessed using DNA metabarcoding. Mol Biol Rep 49, 179–188 (2022). https://doi.org/10.1007/s11033-021-06857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06857-1

Keywords

Navigation