Skip to main content
Log in

Regulatory effect of vitamin D on pro-inflammatory cytokines and anti-oxidative enzymes dysregulations due to chronic mild stress in the rat hippocampus and prefrontal cortical area

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Chronic stress increases the production of pro-inflammatory cytokines and oxidative stress in the brain, which underlay cognitive and psychological problems. In addition to the anti-depressants, vitamin D is known to act as an anti-inflammatory and anti-oxidative agent. This study investigates the specific effects of vitamin D in protecting hippocampus and pre-frontal cortex (PFC) against chronic mild stress (CMS)-induced activation of pro-inflammatory cytokines IL-6 and TNF-α and decreasing the activation of anti-oxidative enzymes super oxide dismutase (SOD) and glutathione peroxidase (GPx).

Methods and results

Rats were exposed to CMS for 3 weeks. Two groups of rats received vitamin D (5 and 10 μg/kg) and another received fluoxetine (5 mg/kg) along with CMS. Control groups were not exposed to CMS, but received treatments similar to CMS groups. Serum corticosterone and IL-6, TNF-α and SOD and GPx levels in the hippocampus and PFC were measured at the end of three weeks. CMS significantly increased corticosterone, IL-6, TNF-α and decreased SOD and GPx levels (P < 0.0001) in hippocampus and PFC. Vitamin D treatment reduced corticosterone levels (P < 0.01), increased SOD (P < 0.0001) and GPx (P < 0.01) and decreased IL-6 and TNF-α (P < 0.0001) levels in the hippocampus and PFC compared to rats treated with vitamin D vehicle. Vitamin D-10 regulation of SOD and IL-6 levels was more effective than fluoxetine (P < 0.0001 and P < 0.01, respectively, in hippocampus).

Conclusion

This study suggests that vitamin D effectively protects the key regions of the brain related to cognition and affective behavior, against the inflammation and oxidative stress caused by the chronic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data is available on request.

Code availability

Not applicable.

References

  1. Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229. https://doi.org/10.1016/j.neuroscience.2013.04.060

    Article  CAS  PubMed  Google Scholar 

  2. Duque Ede A, Munhoz CD (2016) The pro-inflammatory effects of glucocorticoids in the brain. Front Endocrinol (Lausanne) 7:78. https://doi.org/10.3389/fendo.2016.00078

    Article  Google Scholar 

  3. Sedaghat K, Yousefian Z, Vafaei AA, Rashidy-Pour A, Parsaei H, Khaleghian A, Choobdar S (2019) Mesolimbic dopamine system and its modulation by vitamin D in a chronic mild stress model of depression in the rat. Behav Brain Res 356:156–169. https://doi.org/10.1016/j.bbr.2018.08.020

    Article  CAS  PubMed  Google Scholar 

  4. Liu D, Wang Z, Liu S, Wang F, Zhao S, Hao A (2011) Anti-inflammatory effects of fluoxetine in lipopolysaccharide (LPS)-stimulated microglial cells. Neuropharmacology 61:592–529. https://doi.org/10.1016/j.neuropharm.2011.04.033

    Article  CAS  PubMed  Google Scholar 

  5. Caiaffo V, Oliveira BD, de Sa FB, Evencio Neto J (2016) Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine. Pharmacol Res Perspect 4:e00231. https://doi.org/10.1002/prp2.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. You Z, Luo C, Zhang W, Chen Y, He J, Zhao Q, Zuo R, Wu Y (2011) Pro- and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 225:135–141. https://doi.org/10.1016/j.bbr.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  7. Eyles DW, Burne TH, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 34:47–64. https://doi.org/10.1016/j.yfrne.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  8. Cui X, Pertile R, Liu P, Eyles DW (2015) Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator. Neuroscience 304:90–100. https://doi.org/10.1016/j.neuroscience.2015.07.048

    Article  CAS  PubMed  Google Scholar 

  9. Trinko JR, Land BB, Solecki WB, Wickham RJ, Tellez LA, Maldonado-Aviles J, de Araujo IE, Addy NA, DiLeone RJ (2016) Vitamin D3: a role in dopamine circuit regulation, diet-induced obesity, and drug consumption. Neuro 3:10. https://doi.org/10.1523/ENEURO.0122-15.2016

    Article  Google Scholar 

  10. Kajta M, Makarewicz D, Zieminska E, Jantas D, Domin H, Lason W, Kutner A, Lazarewicz JW (2009) Neuroprotection by co-treatment and post-treating with calcitriol following the ischemic and excitotoxic insult in vivo and in vitro. Neurochem Int 55:265–274. https://doi.org/10.1016/j.neuint.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  11. Kalueff AV, Eremin KO, Tuohimaa P (2004) Mechanisms of neuroprotective action of vitamin D(3). Biochemistry (Mosc) 69:738–741

    Article  CAS  Google Scholar 

  12. Langub MC, Herman JP, Malluche HH, Koszewski NJ (2001) Evidence of functional vitamin D receptors in rat hippocampus. Neuroscience 104:49–56

    Article  CAS  PubMed  Google Scholar 

  13. Latimer CS, Brewer LD, Searcy JL, Chen KC, Popovic J, Kraner SD, Thibault O, Blalock EM, Landfield PW, Porter NM (2014) Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci USA 111:E4359-66. https://doi.org/10.1073/pnas.1404477111

    Article  CAS  PubMed  Google Scholar 

  14. Bakhtiari-Dovvombaygi H, Izadi S, Zare Moghaddam M, Hashemzehi M, Hosseini M, Azhdari-Zarmehri H, Dinpanah H, Beheshti F (2021) Beneficial effects of vitamin D on anxiety and depression-like behaviors induced by unpredictable chronic mild stress by suppression of brain oxidative stress and neuroinflammation in rats. Naunyn Schmiedebergs Arch Pharmacol 394:655–667. https://doi.org/10.1007/s00210-020-02002-0

    Article  CAS  PubMed  Google Scholar 

  15. Obradovic D, Gronemeyer H, Lutz B, Rein T (2006) Cross-talk of vitamin D and glucocorticoids in hippocampal cells. J Neurochem 96:500–509. https://doi.org/10.1111/j.1471-4159.2005.03579.x

    Article  CAS  PubMed  Google Scholar 

  16. Lu Y, Ho CS, Liu X, Chua AN, Wang W, McIntyre RS, Ho RC (2017) Chronic administration of fluoxetine and pro-inflammatory cytokine change in a rat model of depression. PLoS ONE 12:e186700. https://doi.org/10.1371/journal.pone.0186700

    Article  CAS  Google Scholar 

  17. Du RH, Tan J, Sun XY, Lu M, Ding JH, Hu G (2016) Fluoxetine inhibits NLRP3 inflammasome activation: implication in depression. Int J Neuropsychopharmacol 19:1–9. https://doi.org/10.1093/ijnp/pyw037

    Article  CAS  Google Scholar 

  18. Boontanrart M, Hall SD, Spanier JA, Hayes CE, Olson JK (2016) Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. J Neuroimmunol 292:126–136. https://doi.org/10.1016/j.jneuroim.2016.01.015

    Article  CAS  PubMed  Google Scholar 

  19. Camargo A, Dalmagro AP, Rikel L, da Silva EB, Simão da Silva KAB, Zeni ALB (2018) Cholecalciferol counteracts depressive-like behavior and oxidative stress induced by repeated corticosterone treatment in mice. Eur J Pharmacol 833:451–461. https://doi.org/10.1016/j.ejphar.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  20. Mograbi KM, Suchecki D, da Silva SG, Covolan L, Hamani C (2020) Chronic unpredictable restraint stress increases hippocampal pro-inflammatory cytokines and decreases motivated behavior in rats. Stress 23:427–436. https://doi.org/10.1080/10253890.2020.1712355

    Article  CAS  PubMed  Google Scholar 

  21. Duman RS, Li N (2012) A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci 367:2475–2484. https://doi.org/10.1098/rstb.2011.0357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM (2009) The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 64:33–39. https://doi.org/10.1016/j.neuron.2009.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han H, Cui M, You X, Chen M, Piao X, Jin G (2015) A role of 1,25(OH)2D3 supplementation in rats with nonalcoholic steatohepatitis induced by choline-deficient diet. Nutr Metab Cardiovasc Dis 25:556–561. https://doi.org/10.1016/j.numecd.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  24. First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A (2011) The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. J Mol Neurosci 45:246–255. https://doi.org/10.1007/s12031-011-9515-5

    Article  CAS  PubMed  Google Scholar 

  25. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  27. Lv H, Zhu C, Wu R, Ni H, Lian J, Xu Y, Xia Y, Shi G, Li Z, Caldwell RB, Caldwell RW, Yao L, Chen Y (2019) Chronic mild stress induced anxiety-like behaviors can be attenuated by inhibition of NOX2-derived oxidative stress. J Psychiatr Res 114:55–66. https://doi.org/10.1016/j.jpsychires.2019.04.008

    Article  PubMed  Google Scholar 

  28. Cameron LP, Benson CJ, Dunlap LE, Olson DE (2018) Effects of N,N-dimethyltryptamine on rat behaviors relevant to anxiety and depression. ACS Chem Neurosci 9:1582–1590. https://doi.org/10.1021/acschemneuro.8b00134

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, Goleva E (2012) Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol 188:2127–2135. https://doi.org/10.4049/jimmunol.1102412

    Article  CAS  PubMed  Google Scholar 

  30. Munhoz CD, Lepsch LB, Kawamoto EM, Malta MB, Lima Lde S, Avellar MC, Sapolsky RM, Scavone C (2006) Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci 26:3813–3820. https://doi.org/10.1523/JNEUROSCI.4398-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhong J, Li G, Xu H, Wang Y, Shi M (2019) Baicalin ameliorates chronic mild stress-induced depression-like behaviors in mice and attenuates inflammatory cytokines and oxidative stress. Braz J Med Biol Res 52:e8434. https://doi.org/10.1590/1414-431X20198434

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gregus A, Wintink AJ, Davis AC, Kalynchuk LE (2005) Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav Brain Res 156:105–114. https://doi.org/10.1016/j.bbr.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  33. Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J (2012) Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 36:2085–2117. https://doi.org/10.1016/j.neubiorev.2012.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang P, Zhang WY, Li HD, Cai HL, Liu YP, Chen LY (2013) Stress and vitamin D: altered vitamin D metabolism in both the hippocampus and myocardium of chronic unpredictable mild stress exposed rats. Psychoneuroendocrinology 38:2091–2098. https://doi.org/10.1016/j.psyneuen.2013.03.017

    Article  CAS  PubMed  Google Scholar 

  35. Tata DA, Anderson BJ (2010) The effects of chronic glucocorticoid exposure on dendritic length, synapse numbers and glial volume in animal models: implications for hippocampal volume reductions in depression. Physiol Behav 99:186–193. https://doi.org/10.1016/j.physbeh.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  36. Moretti M, Colla A, de Oliveira Balen G, dos Santos DB, Budni J, de Freitas AE, Farina M, Severo Rodrigues AL (2012) Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res 46:331–340. https://doi.org/10.1016/j.jpsychires.2011.11.009

    Article  PubMed  Google Scholar 

  37. Djordjevic J, Djordjevic A, Adzic M, Elakovic I, Matic G, Radojcic MB (2011) Fluoxetine affects antioxidant system and promotes apoptotic signaling in Wistar rat liver. Eur J Pharmacol 659:61–66. https://doi.org/10.1016/j.ejphar.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  38. da Silva Souza SV, da Rosa PB, Neis VB, Moreira JD, Rodrigues ALS, Moretti M (2020) Effects of cholecalciferol on behavior and production of reactive oxygen species in female mice subjected to corticosterone-induced model of depression. Naunyn Schmiedebergs Arch Pharmacol 393:111–120. https://doi.org/10.1007/s00210-019-01714-2

    Article  CAS  PubMed  Google Scholar 

  39. Taghizadeh M, Talaei SA, Salami M (2013) Vitamin D deficiency impairs spatial learning in adult rats. Iran Biomed J 17:42–48. https://doi.org/10.6091/ibj.1061.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zong L, Chu P, Huang P, Guo Y, Lv Y (2017) Effect of vitamin D on the learning and memory ability of FGR rat and NMDA receptor expression in hippocampus. Exp Ther Med 14:581–586. https://doi.org/10.3892/etm.2017.4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koshkina A, Dudnichenko T, Baranenko D, Fedotova J, Drago F (2019) Effects of vitamin D(3) in long-term ovariectomized rats subjected to chronic unpredictable mild stress: BDNF, NT-3, and NT-4 implications. Nutrients 11:10. https://doi.org/10.3390/nu11081726

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Semnan University of Medical Sciences (Grant Number 1721).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KS; Methodology: KS, RN, RP, ARB and ZG; Formal analysis and investigation: KS, RN, ARB; Writing—original draft preparation: KS; Writing—review and editing: KS, ARB; Funding acquisition: KS; Resources: KS; Supervision: KS, ARB.

Corresponding author

Correspondence to Katayoun Sedaghat.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest to declare.

Ethical approval

All experimental procedures were performed under the approval of the Animal Care and Use Committee of Semnan University of Medical Sciences (ethic number: IR.SEMUMS.REC.1398.312).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedaghat, K., Naderian, R., Pakdel, R. et al. Regulatory effect of vitamin D on pro-inflammatory cytokines and anti-oxidative enzymes dysregulations due to chronic mild stress in the rat hippocampus and prefrontal cortical area. Mol Biol Rep 48, 7865–7873 (2021). https://doi.org/10.1007/s11033-021-06810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06810-2

Keywords

Navigation