Skip to main content
Log in

The role of microRNAs in diseases and related signaling pathways

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are epigenetic regulators of the gene expression and act through posttranslational modification. They bind to 3′-UTR of target mRNAs to inhibit translation or increase the degradation mRNA in many tissues. Any alteration in the level of miRNA expression in many human diseases indicates their involvement in the pathogenesis of many diseases. On the other hand, the regulation of the signaling pathways is necessary for the maintenance of natural and physiological characteristics of any cell. It is worth mentioning that dysfunction of the signaling pathways manifests itself as a disorder or disease. The significant evidence report that miRNAs regulate the several signaling pathways in many diseases. Base on previous studies, miRNAs can be used for therapeutic or diagnostic purposes. According to the important role of miRNAs on the cell signaling pathways, this article reviews miRNAs involvement in incidence of diseases by changing signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207

    CAS  PubMed  Google Scholar 

  2. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta Mol Cell Res 1803(11):1231–43

    CAS  Google Scholar 

  3. de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V (2017) Epigenetic biomarkers and cardiovascular disease: circulating microRNAs. Rev Esp Cardiol (Engl Ed) 70(9):763–769

    Google Scholar 

  4. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    CAS  PubMed  Google Scholar 

  5. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    CAS  PubMed  Google Scholar 

  6. Zhou X, Yang P-C (2012) MicroRNA: a small molecule with a big biological impact  MicroRNA (Shariqah United Arab Emirates) 1(1):1

    Google Scholar 

  7. Wojciechowska A, Braniewska A, Kozar-Kamińska K (2017) MicroRNA in cardiovascular biology and disease. Advances in clinical and experimental medicine: official organ. Wroclaw Medical University 26(5):865–874

    Google Scholar 

  8. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203

    CAS  PubMed  Google Scholar 

  9. Parvaee P, Sarmadian H, Khansarinejad B, Amini M, Mondanizadeh M (2019) Plasma level of microRNAs, miR-107, miR-194 and miR-210 as potential biomarkers for diagnosis intestinal-type gastric cancer in human. Asian Pac J Cancer Prev 20(5):1421

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mondanizadeh M, Arefian E, Mosayebi G, Saidijam M, Khansarinejad B, Hashemi SM (2015) MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA. J Cell Biochem 116(6):943–953

    CAS  PubMed  Google Scholar 

  11. Naderi M, Pazouki A, Arefian E, Hashemi SM, Jamshidi-Adegani F, Gholamalamdari O et al (2017) Two triacylglycerol pathway genes, CTDNEP1 and LPIN1, are down-regulated by hsa-miR-122-5p in hepatocytes. Arch Iran Med 20(3):165–171

    PubMed  Google Scholar 

  12. de Planell-Saguer M, Rodicio MC (2011) Analytical aspects of microRNA in diagnostics: a review. Anal chim acta 699(2):134–152

    PubMed  Google Scholar 

  13. López-Jiménez E, Andrés-León E (2021) The implications of ncRNAs in the development of human diseases. Non-coding RNA 7(1):17

    PubMed  PubMed Central  Google Scholar 

  14. Bagheri M, Khansarinejad B, Mosayebi G, Moradabadi A, Mondanizadeh M (2021) Alterations in the plasma expression of mir-15b, mir-195 and the tumor-suppressor gene DLEU7 in patients with B-cell chronic lymphocytic leukemia. Rep Biochem Mol Biol 10(1):20–29

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bagheri M, Khansarinejad B, Mosayebi G, Moradabadi A, Mondanizadeh M (2021) Diagnostic value of plasma miR-145 and miR-185 as targeting of the APRIL oncogene in the B-cell chronic lymphocytic leukemia. Asian Pac J Cancer Prev 22(1):111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Carlson ME, Silva HS, Conboy IM (2008) Aging of signal transduction pathways, and pathology. Exp Cell Res 314(9):1951–1961

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mehdipour M, Liu Y, Liu C, Kumar B, Kim D, Gathwala R et al (2018) Key age-imposed signaling changes that are responsible for the decline of stem cell function. In: Biochemistry and cell biology of ageing: Part I: biomedical science.  Springer, Singapore, pp 119–43

  18. Papin JA, Palsson BO (2004) The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophys J 87(1):37–46

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun Y, Liu W-Z, Liu T, Feng X, Yang N, Zhou H-F (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct 35(6):600–604

    CAS  Google Scholar 

  20. Li L, Tang P, Li S, Qin X, Yang H, Wu C et al (2017) Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy. Med Oncol 34(10):1–10

    Google Scholar 

  21. Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17(6):596–603

    CAS  PubMed  Google Scholar 

  22. Kudo M (2012) Signaling pathway/molecular targets and new targeted agents under development in hepatocellular carcinoma. World J Gastroenterol 18(42):6005

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Coombs GS, Covey TM, Virshup DM (2008) Wnt signaling in development, disease and translational medicine. Curr Drug Targets 9(7):513–531

    CAS  PubMed  Google Scholar 

  24. Mitchell S, Vargas J, Hoffmann A (2016) Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med 8(3):227–241

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11(4):252–263

    CAS  PubMed  Google Scholar 

  26. Tan L, Yu J-T, Tan L (2015) Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol Neurobiol 51(3):1249–1262

    CAS  PubMed  Google Scholar 

  27. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mincheva-Tasheva S, Soler RM (2013) NF-κB signaling pathways: role in nervous system physiology and pathology. Neuroscientist 19(2):175–194

    CAS  PubMed  Google Scholar 

  29. Kim EK, Choi E-J (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis 1802(4):396–405

    CAS  Google Scholar 

  30. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–6

    CAS  PubMed  Google Scholar 

  31. Hébert SS, Papadopoulou AS, Smith P, Galas M-C, Planel E, Silahtaroglu AN et al (2010) Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 19(20):3959–3969

    PubMed  Google Scholar 

  32. Cao F, Liu Z, Sun G (2020) Diagnostic value of miR-193a-3p in Alzheimer’s disease and miR-193a-3p attenuates amyloid-β induced neurotoxicity by targeting PTEN. Exp Gerontol 130:110814

    CAS  PubMed  Google Scholar 

  33. Reddy PH, Oliver D (2019) Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 8(5):488

    CAS  PubMed Central  Google Scholar 

  34. Stygelbout V, Leroy K, Pouillon V, Ando K, D’Amico E, Jia Y et al (2014) Inositol trisphosphate 3-kinase B is increased in human Alzheimer brain and exacerbates mouse Alzheimer pathology. Brain 137(2):537–552

    PubMed  Google Scholar 

  35. Salta E, Sierksma A, Vanden Eynden E, De Strooper B (2016) miR-132 loss de‐represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer’s brain. EMBO Mol Med 8(9):1005–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong Y, Han L-L, Xu Z-X (2018) Suppressed microRNA-96 inhibits iNOS expression and dopaminergic neuron apoptosis through inactivating the MAPK signaling pathway by targeting CACNG5 in mice with Parkinson’s disease. Mol Med 24(1):61

    PubMed  PubMed Central  Google Scholar 

  37. Zhang J, Zhou D, Zhang Z, Qu X, Bao K, Lu G et al (2019) miR-let-7a suppresses α-Synuclein-induced microglia inflammation through targeting STAT3 in Parkinson’s disease. Biochem Biophys Res Commun 519(4):740–746

    CAS  PubMed  Google Scholar 

  38. Choi DC, Yoo M, Kabaria S, Junn E (2018) MicroRNA-7 facilitates the degradation of alpha-synuclein and its aggregates by promoting autophagy. Neurosci Lett 678:118–123

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cwik VA (2001) What is amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis: a guide for patients and families. 4:1-16

  40. Parisi C, Napoli G, Amadio S, Spalloni A, Apolloni S, Longone P et al (2016) MicroRNA-125b regulates microglia activation and motor neuron death in ALS. Cell Death Differ 23(3):531–541

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li C, Chen Y, Chen X, Wei Q, Cao B, Shang H (2017) Downregulation of microRNA-193b-3p promotes autophagy and cell survival by targeting TSC1/mTOR signaling in NSC-34 cells. Front Mol Neurosci 10:160

    PubMed  PubMed Central  Google Scholar 

  42. Kohen R, Dobra A, Tracy J, Haugen E (2014) Transcriptome profiling of human hippocampus dentate gyrus granule cells in mental illness. Transl Psychiatry 4(3):e366-e

    Google Scholar 

  43. Ng LF, Kaur P, Bunnag N, Suresh J, Sung ICH, Tan QH et al (2019) WNT signaling in disease. Cells 8(8):826

    CAS  PubMed Central  Google Scholar 

  44. Shariq AS, Brietzke E, Rosenblat JD, Pan Z, Rong C, Ragguett R-M et al (2018) Therapeutic potential of JAK/STAT pathway modulation in mood disorders. Rev Neurosci 30(1):1–7

    PubMed  Google Scholar 

  45. Maffioletti E, Cattaneo A, Rosso G, Maina G, Maj C, Gennarelli M et al (2016) Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J Affect Disord 200:250–258

    CAS  PubMed  Google Scholar 

  46. Kupfer DJ, Frank E, Phillips ML (2012) Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 379(9820):1045–1055

    PubMed  Google Scholar 

  47. Herrman H, Kieling C, McGorry P, Horton R, Sargent J, Patel V (2019) Reducing the global burden of depression: a Lancet—World Psychiatric Association Commission. Lancet 393(10189):e42–e43

    PubMed  Google Scholar 

  48. Kessler RC, Angermeyer M, Anthony JC, De Graaf R, Demyttenaere K, Gasquet I et al (2007) Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry 6(3):168

    PubMed  PubMed Central  Google Scholar 

  49. Lou D, Wang J, Wang X (2019) miR-124 ameliorates depressive-like behavior by targeting STAT3 to regulate microglial activation. Mol Cell Probes 48:101470

    CAS  PubMed  Google Scholar 

  50. Kasemeier-Kulesa JC, Morrison JA, Lefcort F, Kulesa PM (2015) TrkB/BDNF signalling patterns the sympathetic nervous system. Nat Commun 6(1):1–10

    Google Scholar 

  51. Li Y, Wang N, Pan J, Wang X, Zhao Y, Guo Z (2021) Hippocampal miRNA-144 modulates depressive-like behaviors in rats by targeting PTP1B. Neuropsychiatr Dis Treat 17:389

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lopez JP, Fiori LM, Cruceanu C, Lin R, Labonte B, Cates HM et al (2017) MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat Commun 8(1):1–12

    Google Scholar 

  53. Ketter TA (2010) Diagnostic features, prevalence, and impact of bipolar disorder. J Clin Psychiatry 71(6):e14

    PubMed  Google Scholar 

  54. Craddock N, Sklar P (2013) Genetics of bipolar disorder. Lancet 381(9878):1654–1662

    CAS  PubMed  Google Scholar 

  55. Gershon ES, Grennan K, Busnello J, Badner JA, Ovsiew F, Memon S et al (2014) A rare mutation of CACNA1C in a patient with bipolar disorder, and decreased gene expression associated with a bipolar-associated common SNP of CACNA1C in brain. Mol Psychiatry 19(8):890–894

    CAS  PubMed  Google Scholar 

  56. Rueckert EH, Barker D, Ruderfer D, Bergen SE, O’Dushlaine C, Luce CJ et al (2013) Cis-acting regulation of brain-specific ANK3 gene expression by a genetic variant associated with bipolar disorder. Mol Psychiatry 18(8):922–929

    CAS  PubMed  Google Scholar 

  57. Durak O, de Anda FC, Singh KK, Leussis MP, Petryshen TL, Sklar P et al (2015) Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of β-catenin. Mol Psychiatry 20(3):388–397

    CAS  PubMed  Google Scholar 

  58. Bavamian S, Mellios N, Lalonde J, Fass DM, Wang J, Sheridan SD et al (2015) Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry 20(5):573–584

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mei L, Nave K-A (2014) Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 83(1):27–49

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ripke S, Sanders A, Kendler K, Levinson D, Sklar P, Holmans P et al (2011) Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976

    CAS  Google Scholar 

  61. Ripke S, O’dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45(10):1150–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ripke S, Neale BM, Corvin A, Walters JT, Farh K-H, Holmans PA et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421

    CAS  PubMed Central  Google Scholar 

  63. Thomas KT, Anderson BR, Shah N, Zimmer SE, Hawkins D, Valdez AN et al (2017) Inhibition of the schizophrenia-associated microRNA miR-137 disrupts Nrg1α neurodevelopmental signal transduction. Cell Rep 20(1):1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wong LL, Wang J, Liew OW, Richards AM, Chen Y-T (2016) MicroRNA and heart failure. Int J Mol Sci 17(4):502

    PubMed  PubMed Central  Google Scholar 

  65. Small EM, Frost RJ, Olson EN (2010) MicroRNAs add a new dimension to cardiovascular disease. Circulation 121(8):1022–1032

    PubMed  PubMed Central  Google Scholar 

  66. Papaconstantinou J (2019) The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells 8(11):1383

    CAS  PubMed Central  Google Scholar 

  67. White S, Lin L, Hu K (2020) NF-κB and tPA signaling in kidney and other diseases. Cells 9(6):1348

    CAS  PubMed Central  Google Scholar 

  68. Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K et al (2019) Roles of cyclic AMP response element binding activation in the ERK1/2 and p38 MAPK signalling pathway in central nervous system, cardiovascular system, osteoclast differentiation and mucin and cytokine production. Int J Mol Sci 20(6):1346

    CAS  PubMed Central  Google Scholar 

  69. Ge Z-W, Zhu X-L, Wang B-C, Hu J-L, Sun J-J, Wang S et al (2019) MicroRNA-26b relieves inflammatory response and myocardial remodeling of mice with myocardial infarction by suppression of MAPK pathway through binding to PTGS2. Int J Cardiol 280:152–159

    PubMed  Google Scholar 

  70. Ren N, Wang M (2018) microRNA-212-induced protection of the heart against myocardial infarction occurs via the interplay between AQP9 and PI3K/Akt signaling pathway. Exp Cell Res 370(2):531–541

    CAS  PubMed  Google Scholar 

  71. Liu J-Y, Shang J, Mu X-D, Gao Z-Y (2019) Protective effect of down-regulated microRNA-27a mediating high thoracic epidural block on myocardial ischemia-reperfusion injury in mice through regulating ABCA1 and NF-κB signaling pathway. Biomed Pharmacother 112:108606

    CAS  PubMed  Google Scholar 

  72. Wang X, Ha T, Hu Y, Lu C, Liu L, Zhang X et al (2016) MicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression. Oncotarget 7(52):86926

    PubMed  PubMed Central  Google Scholar 

  73. Huang Z-Q, Xu W, Wu J-L, Lu X, Chen X-M (2019) MicroRNA-374a protects against myocardial ischemia-reperfusion injury in mice by targeting the MAPK6 pathway. Life Sci 232:116619

    CAS  PubMed  Google Scholar 

  74. Mayr B, Niebauer J, Breitenbach-Koller H (2019) Circulating miRNAs as predictors for morbidity and mortality in coronary artery disease. Mol Biol Rep 46:1–5

    Google Scholar 

  75. Zhang Y-H, He K, Shi G (2017) Effects of microRNA-499 on the inflammatory damage of endothelial cells during coronary artery disease via the targeting of PDCD4 through the NF-Κβ/TNF-α signaling pathway. Cell Physiol Biochem 44(1):110–124

    PubMed  Google Scholar 

  76. Huang W, Wu X, Xue Y, Zhou Y, Xiang H, Yang W et al (2020) MicroRNA-3614 regulates inflammatory response via targeting TRAF6-mediated MAPKs and NF-κB signaling in the epicardial adipose tissue with coronary artery disease. Int J Cardiol 324:152–164

    PubMed  Google Scholar 

  77. Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225(3):631–637

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ghosh AK, Quaggin SE, Vaughan DE (2013) Molecular basis of organ fibrosis: potential therapeutic approaches. Exp Biol Med 238(5):461–481

    Google Scholar 

  79. Leask A (2010) Potential therapeutic targets for cardiac fibrosis: TGFβ, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106(11):1675–1680

    CAS  PubMed  Google Scholar 

  80. Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H et al (2010) Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Investig 120(10):3520–3529

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10(1):15–26

    CAS  PubMed  Google Scholar 

  82. Davis J, Molkentin JD (2014) Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol 70:9–18

    CAS  PubMed  Google Scholar 

  83. Siddiquee K, Hampton J, Khan S, Zadory D, Gleaves L, Vaughan DE et al (2011) Apelin protects against angiotensin II-induced cardiovascular fibrosis and decreases PAI-1 production. J Hypertens 29(4):724

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pchejetski D, Foussal C, Alfarano C, Lairez O, Calise D, Guilbeau-Frugier C et al (2012) Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J 33(18):2360–2369

    CAS  PubMed  Google Scholar 

  85. Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP et al (2013) Apelin is a positive regulator of ACE2 in failing hearts. J Clin Investig 123(12):5203–5211

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ghosh AK, Bhattacharyya S, Varga J (2004) The tumor suppressor p53 abrogates Smad-dependent collagen gene induction in mesenchymal cells. J Biol Chem 279(46):47455–47463

    CAS  PubMed  Google Scholar 

  87. Sutton TA, Hato T, Mai E, Yoshimoto M, Kuehl S, Anderson M et al (2013) p53 is renoprotective after ischemic kidney injury by reducing inflammation. J Am Soc Nephrol 24(1):113–124

    CAS  PubMed  Google Scholar 

  88. Nagpal V, Rai R, Place AT, Murphy SB, Verma SK, Ghosh AK et al (2016) MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis. Circulation 133(3):291–301

    CAS  PubMed  Google Scholar 

  89. Shi Jy, Chen C, Xu X, Lu Q (2019) miR-29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy. Acta Physiol 227(2):e13323

    Google Scholar 

  90. Li Z, Song Y, Liu L, Hou N, An X, Zhan D et al (2017) miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ 24(7):1205–1213

    CAS  PubMed  Google Scholar 

  91. Li S, Sun W, Zheng H, Tian F (2018) Microrna-145 accelerates the inflammatory reaction through activation of NF-κB signaling in atherosclerosis cells and mice. Biomed Pharmacother 103:851–857

    CAS  PubMed  Google Scholar 

  92. Lu Z, Wang F, Yu P, Wang X, Wang Y, Tang S-t et al (2018) Inhibition of miR-29b suppresses MAPK signaling pathway through targeting SPRY1 in atherosclerosis. Vasc Pharmacol 102:29–36

    CAS  Google Scholar 

  93. Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13(4):239–250

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Catrysse L, van Loo G (2017) Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κB. Trends Cell Biol 27(6):417–429

    CAS  PubMed  Google Scholar 

  95. Schultze SM, Hemmings BA, Niessen M, Tschopp O (2012) PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Rev Mol Med 14:e1

    PubMed  Google Scholar 

  96. Huang X, Liu G, Guo J, Su Z (2018) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14(11):1483

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lei Y, Wang Q-l, Shen L, Tao Y-y, Liu C-h (2019) MicroRNA-101 suppresses liver fibrosis by downregulating PI3K/Akt/mTOR signaling pathway. Clin Res Hepatol Gastroenterol 43(5):575–584

    CAS  PubMed  Google Scholar 

  98. Zhang T, Hu J, Wang X, Zhao X, Li Z, Niu J et al (2019) MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway. J Hepatol 70(1):87–96

    CAS  PubMed  Google Scholar 

  99. Chungen Y, Dongfang Z, Guoyuan X (2020) MicroRNA-146a protects against ischemia/reperfusion liver injury through inhibition of toll-like receptor 4 signaling pathway in rats. Transplant Proc 52(3):1007–1013

    PubMed  Google Scholar 

  100. AD Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Supplement 1):S62–S67

    Google Scholar 

  101. Lagathu C, Christodoulides C, Virtue S, Cawthorn WP, Franzin C, Kimber WA et al (2009) Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/β-catenin signaling network. Diabetes 58(3):609–619

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bikkavilli RK, Feigin ME, Malbon CC (2008) Gαo mediates WNT-JNK signaling through Dishevelled 1 and 3, RhoA family members, and MEKK 1 and 4 in mammalian cells. J Cell Sci 121(2):234–245

    CAS  PubMed  Google Scholar 

  103. Kim JM, Park SK, Guo TJ, Kang JY, Ha JS, Lee U et al (2016) Anti-amnesic effect of Dendropanax morbifera via JNK signaling pathway on cognitive dysfunction in high-fat diet-induced diabetic mice. Behav Brain Res 312:39–54

    CAS  PubMed  Google Scholar 

  104. Yu C-Y, Yang C-Y, Rui Z-L (2019) MicroRNA-125b-5p improves pancreatic β-cell function through inhibiting JNK signaling pathway by targeting DACT1 in mice with type 2 diabetes mellitus. Life Sci 224:67–75

    CAS  PubMed  Google Scholar 

  105. Song Y, Jin D, Jiang X, Lv C, Zhu H (2018) Overexpression of microRNA-26a protects against deficient β-cell function via targeting phosphatase with tensin homology in mouse models of type 2 diabetes. Biochem Biophys Res Commun 495(1):1312–1316

    CAS  PubMed  Google Scholar 

  106. Remuzzi G, Perico N, Macia M, Ruggenenti P (2005) The role of renin–angiotensin–aldosterone system in the progression of chronic kidney disease. Kidney Int 68:S57–S65

    Google Scholar 

  107. Lu Q, Ma Z, Ding Y, Bedarida T, Chen L, Xie Z et al (2019) Circulating miR-103a-3p contributes to angiotensin II-induced renal inflammation and fibrosis via a SNRK/NF-κB/p65 regulatory axis. Nat Commun 10(1):1–14

    Google Scholar 

  108. Zhu X, Li W, Li H (2018) miR-214 ameliorates acute kidney injury via targeting DKK3 and activating of Wnt/β-catenin signaling pathway. Biol Res 51(1):31

    PubMed  PubMed Central  Google Scholar 

  109. Rebane A (2015) microRNA and Allergy. In: microRNA: medical evidence. Springer, Cham,  pp 331–52

  110. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM (2017) JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77(5):521–546

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mitchell JP, Carmody RJ (2018) NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol 335:41–84

    CAS  PubMed  Google Scholar 

  112. Chen J-Q, Papp G, Szodoray P, Zeher M (2016) The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev 15(12):1171–1180

    CAS  PubMed  Google Scholar 

  113. Zhou C, Zhao L, Wang K, Qi Q, Wang M, Yang L et al (2019) MicroRNA-146a inhibits NF-κB activation and pro–inflammatory cytokine production by regulating IRAK1 expression in THP–1 cells. Exp Ther Med 18(4):3078–3084

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu J, Zhu L, Xie G-l, Bao J-f (2015) Let-7 miRNAs modulate the activation of NF-κB by targeting TNFAIP3 and are involved in the pathogenesis of lupus nephritis. PLoS ONE 10(6):e0121256

    PubMed  PubMed Central  Google Scholar 

  115. Qi H, Cao Q, Liu Q (2020) MicroRNA-183 exerts a protective role in lupus nephritis through blunting the activation of TGF-β/Smad/TLR3 pathway via reducing Tgfbr1. Exp Cell Res 394(2):112138

    CAS  PubMed  Google Scholar 

  116. Zhu J, Wang J, Huang J, Du W, He Y, Pan H et al (2021) MicroRNA–140–5p regulates the proliferation, apoptosis and inflammation of RA FLSs by repressing STAT3. Exp Ther Med 21(2):1

    Google Scholar 

  117. Najm A, Masson FM, Preuss P, Georges S, Ory B, Quillard T et al (2020) MicroRNA-17‐5p reduces inflammation and bone erosions in mice with collagen‐induced arthritis and directly targets the JAK/STAT pathway in rheumatoid arthritis fibroblast‐like synoviocytes. Arthritis Rheumatol 72(12):2030–2039

    CAS  PubMed  Google Scholar 

  118. Li J, Qiu D, Chen Z, Du W, Liu J, Mo X (2016) Altered expression of miR-125a-5p in thymoma-associated myasthenia gravis and its down-regulation of foxp3 expression in Jurkat cells. Immunol Lett 172:47–55

    PubMed  Google Scholar 

  119. Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M (2017) Epigenetic modifications and therapy in multiple sclerosis. Neuromol Med 19(1):11–23

    CAS  Google Scholar 

  120. Li Z-H, Wang Y-F, He D-D, Zhang X-M, Zhou Y-L, Yue H et al (2019) Let-7f-5p suppresses Th17 differentiation via targeting STAT3 in multiple sclerosis. Aging 11(13):4463

    PubMed  PubMed Central  Google Scholar 

  121. Ehtesham N, Khorvash F, Kheirollahi M (2017) miR-145 and miR20a-5p potentially mediate pleiotropic effects of interferon-beta through mitogen-activated protein kinase signaling pathway in multiple sclerosis patients. J Mol Neurosci 61(1):16–24

    CAS  PubMed  Google Scholar 

  122. Zhang X, Gu H, Wang L, Huang F, Cai J (2020) MiR-885‐3p is down‐regulated in peripheral blood mononuclear cells from T1D patients and regulates the inflammatory response via targeting TLR4/NF‐κB signaling. J Gene Med 22(1):e3145

    PubMed  Google Scholar 

  123. Tian J, Pan W, Xu X, Tian X, Zhang M, Hu Q (2020) NF-κB inhibits the occurrence of type 1 diabetes through microRNA-150-dependent PUMA degradation. Life Sci 255

    CAS  PubMed  Google Scholar 

  124. Glavač D, Ravnik-Glavač M (2015) Essential role of microRNA in skin physiology and disease. Medical evidence. Adv Exp Med Biol 888:307–330

    PubMed  Google Scholar 

  125. Mathew G, Hannan A, Hertzler-Schaefer K, Wang F, Feng G-S, Zhong J et al (2016) Targeting of Ras-mediated FGF signaling suppresses Pten-deficient skin tumor. Proc Natl Acad Sci USA 113(46):13156–61

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu B, Phan SH (2016) Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res 108:57–64

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lawrence P, Ceccoli J (2017) Advances in the application and impact of microRNAs as therapies for skin disease. BioDrugs 31(5):423–438

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ruksha TG, Komina AV, Palkina NV (2017) MicroRNA in skin diseases. Eur J Dermatol 27(4):343–352

    CAS  PubMed  Google Scholar 

  129. Xue Y, Liu Y, Bian X, Zhang Y, Li Y, Zhang Q et al (2020) miR-205‐5p inhibits psoriasis‐associated proliferation and angiogenesis: Wnt/β‐catenin and mitogen‐activated protein kinase signaling pathway are involved. J Dermatol 47(8):882–892

    CAS  PubMed  Google Scholar 

  130. Wang R, Wang F-f, Cao H-w, Yang J-y (2019) MiR-223 regulates proliferation and apoptosis of IL-22-stimulated HaCat human keratinocyte cell lines via the PTEN/Akt pathway. Life Sci 230:28–34

    CAS  PubMed  Google Scholar 

  131. Xu L, Leng H, Shi X, Ji J, Fu J (2017) MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis. Biomed Pharmacother 90:524–530

    CAS  PubMed  Google Scholar 

  132. Yao Q, Xing Y, Wang Z, Liang J, Lin Q, Huang M et al (2020) MiR-16-5p suppresses myofibroblast activation in systemic sclerosis by inhibiting NOTCH signaling. Aging 13(2):2640–2654

    PubMed  PubMed Central  Google Scholar 

  133. Zhu H, Luo H, Li Y, Zhou Y, Jiang Y, Chai J et al (2013) MicroRNA-21 in scleroderma fibrosis and its function in TGF-β-regulated fibrosis-related genes expression. J Clin Immunol 33(6):1100–1109

    CAS  PubMed  Google Scholar 

  134. Shi X, Liu Q, Li N, Tu W, Luo R, Mei X et al (2018) MiR-3606-3p inhibits systemic sclerosis through targeting TGF-β type II receptor. Cell Cycle 17(16):1967–1978

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao G, Yin Y, Zhao B (2020) miR-140‐5p is negatively correlated with proliferation, invasion, and tumorigenesis in malignant melanoma by targeting SOX4 via the Wnt/β‐catenin and NF‐κB cascades. J Cell Physiol 235(3):2161–2170

    CAS  PubMed  Google Scholar 

  136. Forloni M, Dogra SK, Dong Y, Conte D Jr, Ou J, Zhu LJ et al (2014) miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. eLife 3:e01460

    PubMed  PubMed Central  Google Scholar 

  137. Long J, Luo J, Yin X (2018) MiR-338-5p promotes the growth and metastasis of malignant melanoma cells via targeting CD82. Biomed Pharmacother 102:1195–1202

    CAS  PubMed  Google Scholar 

  138. Ploegh HL (1998) Viral strategies of immune evasion. Science 280(5361):248–253

    CAS  PubMed  Google Scholar 

  139. Deng L, Zeng Q, Wang M, Cheng A, Jia R, Chen S et al (2018) Suppression of NF-κB activity: a viral immune evasion mechanism. Viruses 10(8):409

    PubMed Central  Google Scholar 

  140. Barbu MG, Condrat CE, Thompson DC, Bugnar OL, Cretoiu D, Toader OD et al (2020) MicroRNA involvement in signaling pathways during viral infection. Front Cell Dev Biol 8:143

    PubMed  PubMed Central  Google Scholar 

  141. Tycowski KT, Guo YE, Lee N, Moss WN, Vallery TK, Xie M et al (2015) Viral noncoding RNAs: more surprises. Genes Dev 29(6):567–584

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen L, Zhou Y, Li H (2018) LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus Res 257:25–32

    CAS  PubMed  Google Scholar 

  143. Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J et al (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736

    CAS  PubMed  Google Scholar 

  144. Wang J, Chen J, Sen S (2016) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231(1):25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Moradi N, Paryan M, Khansarinejad B, Sarmadian H, Mondanizadeh M (2019) Plasma level of miR-5193 as a novel biomarker for diagnosis of HBV-related hepatocellular carcinoma. Hepat Mon. https://doi.org/10.5812/hepatmon.84455

    Article  Google Scholar 

  146. Zhou S-j, Deng Y-l, Liang H-f, Jaoude JC, Liu F-y (2017) Hepatitis B virus X protein promotes CREB-mediated activation of miR-3188 and Notch signaling in hepatocellular carcinoma. Cell Death Differ 24(9):1577–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang J, Chen J, Liu Y, Zeng X, Wei M, Wu S et al (2019) Hepatitis B virus induces autophagy to promote its replication by the axis of miR-192‐3p‐XIAP through NF kappa B signaling. Hepatology 69(3):974–992

    CAS  PubMed  Google Scholar 

  148. Tian H, He Z (2018) miR-215 enhances HCV replication by targeting TRIM22 and inactivating NF-κB signaling. Yonsei Med J 59(4):511

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Deng Y, Wang J, Huang M, Xu G, Wei W, Qin H (2019) Inhibition of miR-148a‐3p resists hepatocellular carcinoma progress of hepatitis C virus infection through suppressing c‐Jun and MAPK pathway. J Cell Mol Med 23(2):1415–1426

    CAS  PubMed  Google Scholar 

  150. Lee EB, Sung PS, Kim J-H, Park DJ, Hur W, Yoon SK (2020) microRNA-99a restricts replication of hepatitis C virus by targeting mTOR and de novo lipogenesis. Viruses 12(7):696

    CAS  PubMed Central  Google Scholar 

  151. Wang F, Shan S, Huo Y, Xie Z, Fang Y, Qi Z et al (2018) MiR-155-5p inhibits PDK1 and promotes autophagy via the mTOR pathway in cervical cancer. Int J Biochem Cell Biol 99:91–99

    CAS  PubMed  Google Scholar 

  152. Fan Z, Cui H, Xu X, Lin Z, Zhang X, Kang L et al (2015) MiR-125a suppresses tumor growth, invasion and metastasis in cervical cancer by targeting STAT3. Oncotarget 6(28):25266

    PubMed  PubMed Central  Google Scholar 

  153. Yang X, Zhao C, Bamunuarachchi G, Wang Y, Liang Y, Huang C et al (2019) miR-193b represses influenza A virus infection by inhibiting Wnt/β‐catenin signalling. Cell Microbiol 21(5):e13001

    PubMed  PubMed Central  Google Scholar 

  154. Guo M, Li F, Ji J, Liu Y, Liu F, Zhao Y et al (2020) Inhibition of miR-93 promotes interferon effector signaling to suppress influenza A infection by upregulating JAK1. Int Immunopharmacol 86:106754

    CAS  PubMed  Google Scholar 

  155. Guo L, Wang Q, Zhang D (2020) MicroRNA–4485 ameliorates severe influenza pneumonia via inhibition of the STAT3/PI3K/AKT signaling pathway. Oncol Lett 20(5):1

    Google Scholar 

  156. Mansouri S, Khansarinejad B, Mosayebi G, Eghbali A, Mondanizadeh M (2020) Alteration in expression of miR-32 and FBXW7 tumor suppressor in plasma samples of patients with T-cell acute lymphoblastic leukemia. Cancer Manag Res 12:1253

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Hagen JW, Lai EC (2008) microRNA control of cell-cell signaling during development and disease. Cell Cycle 7(15):2327–2332

    CAS  PubMed  Google Scholar 

  158. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934

    CAS  PubMed  Google Scholar 

  159. Cai Y, Yu X, Hu S, Yu J (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinform 7(4):147–154

    CAS  Google Scholar 

  160. Otoukesh B, Abbasi M, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P et al (2020) MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 20(1):1–20

    Google Scholar 

  161. Chen X, Xie D, Zhao Q, You Z-H (2019) MicroRNAs and complex diseases: from experimental results to computational models. Brief Bioinform 20(2):515–539

    CAS  PubMed  Google Scholar 

  162. Feng Y, Yu X (2011) Cardinal roles of miRNA in cardiac development and disease. Sci China Life Sci 54(12):1113–1120

    CAS  PubMed  Google Scholar 

  163. Shoeibi S (2020) Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol 228(1):e13353

    CAS  Google Scholar 

  164. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D et al (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9(2):276

    CAS  PubMed Central  Google Scholar 

  165. Simonson B, Das S (2015) MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem 15(6):467–74

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465

    CAS  PubMed  Google Scholar 

  167. Simion V, Deraredj Nadim W, Benedetti H, Pichon C, Morisset-Lopez S, Baril P (2017) Pharmacomodulation of microRNA expression in neurocognitive diseases: obstacles and future opportunities. Curr Neuropharmacol 15(2):276–290

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Baigude H, Rana TM (2014) Strategies to antagonize miRNA functions in vitro and in vivo. Nanomedicine 9(16):2545–2555

    CAS  PubMed  Google Scholar 

  169. Zhou Z, Wan J, Hou X, Geng J, Li X, Bai X (2017) MicroRNA-27a promotes podocyte injury via PPAR γ-mediated β-catenin activation in diabetic nephropathy. Cell Death Dis 8(3):e2658-e

    Google Scholar 

  170. Xu L, Li Y, Yin L, Qi Y, Sun H, Sun P et al (2018) miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3. Theranostics 8(20):5593

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Lu J-M, Zhang Z-Z, Ma X, Fang S-F, Qin X-H (2020) Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy. Exp Eye Res 190:107886

    CAS  PubMed  Google Scholar 

  172. Yang X, Li X, Lin Q, Xu Q (2019) Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene 715:143995

    CAS  PubMed  Google Scholar 

  173. Cheng Y, Wang D, Wang F, Liu J, Huang B, Baker MA et al (2020) Endogenous miR-204 protects the kidney against chronic injury in hypertension and diabetes. J Am Soc Nephrol 31(7):1539–1554

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Deputy of Arak University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Mondanizadeh.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Ethical approval

For this type of study formal consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghf, A., Khansarinejad, B., Ghaznavi-Rad, E. et al. The role of microRNAs in diseases and related signaling pathways. Mol Biol Rep 49, 6789–6801 (2022). https://doi.org/10.1007/s11033-021-06725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06725-y

Keywords

Navigation