Skip to main content
Log in

Elastic tissue disruption is a major pathogenic factor to human vascular disease

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Elastic fibers are essential components of the arterial extracellular matrix. They consist of the protein elastin and an array of microfibrils that support the protein and connect it to the surrounding matrix. The elastin gene encodes tropoelastin, a protein that requires extensive cross-linking to become elastin. Tropoelastin is expressed throughout human life, but its expression levels decrease with age, suggesting that the potential to synthesize elastin persists during lifetime although declines with aging. The initial abnormality documented in human atherosclerosis is fragmentation and loss of the elastic network in the medial layer of the arterial wall, suggesting an imbalance between elastic fiber injury and restoration. Damaged elastic structures are not adequately repaired by synthesis of new elastic elements. Progressive collagen accumulation follows medial elastic fiber disruption and fibrous plaques are formed, but advanced atherosclerosis lesions do not develop in the absence of prior elastic injury. Aging is associated with arterial extracellular matrix anomalies that evoke those present in early atherosclerosis. The reduction of elastic fibers with subsequent collagen accumulation leads to arterial stiffening and intima-media thickening, which are independent predictors of incident hypertension in prospective community-based studies. Arterial stiffening precedes the development of hypertension. The fundamental role of the vascular elastic network to arterial structure and function is emphasized by congenital disorders caused by mutations that disrupt normal elastic fiber production. Molecular changes in the genes coding tropoelastin, lysyl oxidase (tropoelastin cross-linking), and elastin-associated microfibrils, including fibrillin-1, fibulin-4, and fibulin-5 produce severe vascular injury due to absence of functional elastin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lansing AI, Alex M, Rosenthal TB (1950) Calcium and elastin in human arteriosclerosis. J Gerontol 5(2):112–119

    Article  CAS  PubMed  Google Scholar 

  2. Hallock P, Benson IC (1937) Studies on the elastic properties of human isolated aorta. J Clin Invest 16(4):595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M et al (1999) Arterial stiffness and the development of hypertension. The ARIC study. Hypertension 34(2):201–206

    Article  CAS  PubMed  Google Scholar 

  4. Duprez DA, Gross MD, Ix JH, Kizer JR, Tracy RP, Shea S et al (2018) Collagen biomarkers predict new onset of hypertension in normotensive participants: the Multi-Ethnic Study of Atherosclerosis. J Hypertens 36(11):2245–2250

    Article  CAS  PubMed  Google Scholar 

  5. Haust MD, More RH, Bencosme SA, Balis JU (1965) Elastogenesis in human aorta: an electron microscopic study. Exp Mol Pathol 4(5):508–524

    Article  CAS  PubMed  Google Scholar 

  6. Berenson GS, Radhakrishnamurthy B, Dalferes ER Jr, Srinivasan SR (1971) Carbohydrate macromolecules and atherosclerosis. Hum Pathol 2(1):57–79

    Article  CAS  PubMed  Google Scholar 

  7. Yla-Herttuala S, Sumuvuori H, Karkola K, Mottonen M, Nikkari T (1986) Glycosaminoglycans in normal and atherosclerotic human coronary arteries. Lab Invest 54(4):402–407

    CAS  PubMed  Google Scholar 

  8. Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M (2010) Proteomics characterization of extracellular space components in the human aorta. Mol Cell Proteomics 9(9):2048–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reimann C, Brangsch J, Colletini F, Walter T, Hamm B, Botnar RM et al (2017) Molecular imaging of the extracellular matrix in the context of atherosclerosis. Adv Drug Deliv Rev 113:49–60

    Article  CAS  PubMed  Google Scholar 

  10. Chow MJ, Turcotte R, Lin CP, Zhang Y (2014) Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen. Biophys J 106(12):2684–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Urbanczyk M, Layland SL, Schenke-Layland K (2020) The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol 85–86:1–14

    Article  PubMed  Google Scholar 

  12. Lin S, Mequanint K (2017) Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues. Acta Biomater 59:200–209

    Article  CAS  PubMed  Google Scholar 

  13. Pezzoli D, Di Paolo J, Kumra H, Fois G, Candiani G, Reinhardt DP et al (2018) Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds. Biomaterials 180:130–142

    Article  CAS  PubMed  Google Scholar 

  14. Hedtke T, Schrader CU, Heinz A, Hoehenwarter W, Brinckmann J, Groth T et al (2019) A comprehensive map of human elastin cross-linking during elastogenesis. FEBS J 286(18):3594–3610

    Article  CAS  PubMed  Google Scholar 

  15. Halper J, Kjaer M (2014) Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol 802:31–47

    Article  CAS  PubMed  Google Scholar 

  16. Halabi CM, Kozel BA (2020) Vascular elastic fiber heterogeneity in health and disease. Curr Opin Hematol 27:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krettek A, Sukhova GK, Libby P (2003) Elastogenesis in human arterial disease: a role for macrophages in disordered elastin synthesis. Arterioscler Thromb Vasc Biol 23(4):582–587

    Article  CAS  PubMed  Google Scholar 

  18. Smith ER, Tomlinson LA, Ford ML, McMahon LP, Rajkumar C, Holt SG (2012) Elastin degradation is associated with progressive aortic stiffening and all-cause mortality in predialysis chronic kidney disease. Hypertension 59(5):973–978

    Article  CAS  PubMed  Google Scholar 

  19. King GS, Starcher BC, Kuhn C (1980) The measurement of elastin turnover by the radioimmunoassay of urinary desmosine excretion. Bull Eur Physiopathol Respir 16(Suppl):61–64

    CAS  PubMed  Google Scholar 

  20. Sandberg LB, Soskel NT, Leslie JG (1981) Elastin structure, biosynthesis, and relation to disease states. N Engl J Med 304(10):566–579

    Article  CAS  PubMed  Google Scholar 

  21. Smith EB (1965) The influence of age and atherosclerosis on the chemistry of aortic intima. 2. Collagen and mucopolysaccharides. J Atheroscler Res 5(2):241–8

    Article  CAS  PubMed  Google Scholar 

  22. Yu SY (1971) Cross-linking of elastin in human atherosclerotic aortas. I. A preliminary study. Lab Invest 25(2):121–125

    CAS  PubMed  Google Scholar 

  23. Yeo GC, Baldock C, Wise SG, Weiss AS (2014) A negatively charged residue stabilizes the tropoelastin N-terminal region for elastic fiber assembly. J Biol Chem 289(50):34815–34826

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baydanoff S, Nicoloff G, Alexiev C (1987) Age-related changes in the level of circulating elastin-derived peptides in serum from normal and atherosclerotic subjects. Atherosclerosis 66(1–2):163–168

    Article  CAS  PubMed  Google Scholar 

  25. Urban Z, Michels VV, Thibodeau SN, Davis EC, Bonnefont JP, Munnich A et al (2000) Isolated supravalvular aortic stenosis: functional haploinsufficiency of the elastin gene as a result of nonsense-mediated decay. Hum Genet 106(6):577–588

    Article  CAS  PubMed  Google Scholar 

  26. Ma S, Lieberman S, Turino GM, Lin YY (2003) The detection and quantitation of free desmosine and isodesmosine in human urine and their peptide-bound forms in sputum. Proc Natl Acad Sci USA 100(22):12941–12943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fritze O, Romero B, Schleicher M, Jacob MP, Oh DY, Starcher B et al (2012) Age-related changes in the elastic tissue of the human aorta. J Vasc Res 49(1):77–86

    Article  PubMed  Google Scholar 

  28. Yin X, Wanga S, Fellows AL, Barallobre-Barreiro J, Lu R, Davaapil H et al (2019) Glycoproteomic analysis of the aortic extracellular matrix in marfan patients. Arterioscler Thromb Vasc Biol 39(9):1859–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomson J, Singh M, Eckersley A, Cain SA, Sherratt MJ, Baldock C (2019) Fibrillin microfibrils and elastic fibre proteins: functional interactions and extracellular regulation of growth factors. Semin Cell Dev Biol 89:109–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pilecki B, Holm AT, Schlosser A, Moeller JB, Wohl AP, Zuk AV et al (2016) Characterization of microfibrillar-associated protein 4 (MFAP4) as a tropoelastin- and fibrillin-binding protein involved in elastic fiber formation. J Biol Chem 291(3):1103–1114

    Article  CAS  PubMed  Google Scholar 

  31. Lemaire R, Bayle J, Mecham RP, Lafyatis R (2007) Microfibril-associated MAGP-2 stimulates elastic fiber assembly. J Biol Chem 282(1):800–808

    Article  CAS  PubMed  Google Scholar 

  32. Argraves WS, Tran H, Burgess WH, Dickerson K (1990) Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure. J Cell Biol 111(6 Pt 2):3155–3164

    Article  CAS  PubMed  Google Scholar 

  33. Balbona K, Tran H, Godyna S, Ingham KC, Strickland DK, Argraves WS (1992) Fibulin binds to itself and to the carboxyl-terminal heparin-binding region of fibronectin. J Biol Chem 267(28):20120–20125

    Article  CAS  PubMed  Google Scholar 

  34. Vaittinen M, Kolehmainen M, Schwab U, Uusitupa M, Pulkkinen L (2011) Microfibrillar-associated protein 5 is linked with markers of obesity-related extracellular matrix remodeling and inflammation. Nutr Diabetes 1:e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hinderer S, Shena N, Ringuette LJ, Hansmann J, Reinhardt DP, Brucker SY et al (2015) In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold. Biomed Mater 10(3):034102

    Article  PubMed  Google Scholar 

  36. Eoh JH, Shen N, Burke JA, Hinderer S, Xia Z, Schenke-Layland K et al (2017) Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells. Acta Biomater 52:49–59

    Article  CAS  PubMed  Google Scholar 

  37. Hosoda Y, Kawano K, Yamasawa F, Ishii T, Shibata T, Inayama S (1984) Age-dependent changes of collagen and elastin content in human aorta and pulmonary artery. Angiology 35(10):615–621

    Article  CAS  PubMed  Google Scholar 

  38. McCullagh KG, Duance VC, Bishop KA (1980) The distribution of collagen types I, III and V (AB) in normal and atherosclerotic human aorta. J Pathol 130(1):45–55

    Article  CAS  PubMed  Google Scholar 

  39. Shekhonin BV, Domogatsky SP, Muzykantov VR, Idelson GL, Rukosuev VS (1985) Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristics. Coll Relat Res 5(4):355–368

    Article  CAS  PubMed  Google Scholar 

  40. Riessen R, Isner JM, Blessing E, Loushin C, Nikol S, Wight TN (1994) Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol 144(5):962–974

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuzan A, Chwilkowska A, Pezowicz C, Witkiewicz W, Gamian A, Maksymowicz K et al (2017) The content of collagen type II in human arteries is correlated with the stage of atherosclerosis and calcification foci. Cardiovasc Pathol 28:21–27

    Article  CAS  PubMed  Google Scholar 

  42. Chen S, Birk DE (2013) The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly. FEBS J 280(10):2120–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lyck Hansen M, Beck HC, Irmukhamedov A, Jensen PS, Olsen MH, Rasmussen LM (2015) Proteome analysis of human arterial tissue discloses associations between the vascular content of small leucine-rich repeat proteoglycans and pulse wave velocity. Arterioscler Thromb Vasc Biol 35(8):1896–1903

    Article  CAS  PubMed  Google Scholar 

  44. Onda M, Ishiwata T, Kawahara K, Wang R, Naito Z, Sugisaki Y (2002) Expression of lumican in thickened intima and smooth muscle cells in human coronary atherosclerosis. Exp Mol Pathol 72(2):142–149

    Article  CAS  PubMed  Google Scholar 

  45. Lorenzo P, Aspberg A, Onnerfjord P, Bayliss MT, Neame PJ, Heinegard D (2001) Identification and characterization of asporin: a novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J Biol Chem 276(15):12201–11

    Article  CAS  PubMed  Google Scholar 

  46. Kalamajski S, Aspberg A, Lindblom K, Heinegard D, Oldberg A (2009) Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization. Biochem J 423(1):53–59

    Article  CAS  PubMed  Google Scholar 

  47. Ewart AK, Morris CA, Ensing GJ, Loker J, Moore C, Leppert M et al (1993) A human vascular disorder, supravalvular aortic stenosis, maps to chromosome 7. Proc Natl Acad Sci USA 90(8):3226–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li DY, Toland AE, Boak BB, Atkinson DL, Ensing GJ, Morris CA et al (1997) Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet 6(7):1021–1028

    Article  CAS  PubMed  Google Scholar 

  49. Hayano S, Okuno Y, Tsutsumi M, Inagaki H, Fukasawa Y, Kurahashi H et al (2019) Frequent intragenic microdeletions of elastin in familial supravalvular aortic stenosis. Int J Cardiol 274:290–295

    Article  PubMed  Google Scholar 

  50. Reichheld SE, Muiznieks LD, Lu R, Sharpe S, Keeley FW (2019) Sequence variants of human tropoelastin affecting assembly, structural characteristics and functional properties of polymeric elastin in health and disease. Matrix Biol 84:68–80

    Article  CAS  PubMed  Google Scholar 

  51. Ewart AK, Morris CA, Atkinson D, Jin W, Sternes K, Spallone P et al (1993) Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet 5(1):11–16

    Article  CAS  PubMed  Google Scholar 

  52. Williams JC, Barratt-Boyes BG, Lowe JB (1961) Supravalvular aortic stenosis. Circulation 24:1311–1318

    Article  CAS  PubMed  Google Scholar 

  53. Eisenberg R, Young D, Jacobson B, Boito A (1964) Familial supravalvular aortic stenosis. Am J Dis Child 108:341–347

    CAS  PubMed  Google Scholar 

  54. Morris CA, Demsey SA, Leonard CO, Dilts C, Blackburn BL (1988) Natural history of Williams syndrome: physical characteristics. J Pediatr 113(2):318–326

    Article  CAS  PubMed  Google Scholar 

  55. Cherniske EM, Carpenter TO, Klaiman C, Young E, Bregman J, Insogna K et al (2004) Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A 131(3):255–264

    Article  PubMed  Google Scholar 

  56. Pober BR, Wang E, Caprio S, Petersen KF, Brandt C, Stanley T et al (2010) High prevalence of diabetes and pre-diabetes in adults with Williams syndrome. Am J Med Genet C 154C(2):291–298

    Article  CAS  Google Scholar 

  57. Masserini B, Bedeschi MF, Bianchi V, Scuvera G, Beck-Peccoz P, Lalatta F et al (2013) Prevalence of diabetes and pre-diabetes in a cohort of Italian young adults with Williams syndrome. Am J Med Genet A 161A(4):817–821

    Article  PubMed  Google Scholar 

  58. Stagi S, Lapi E, Cecchi C, Chiarelli F, D’Avanzo MG, Seminara S et al (2014) Williams-beuren syndrome is a genetic disorder associated with impaired glucose tolerance and diabetes in childhood and adolescence: new insights from a longitudinal study. Horm Res Paediatr 82(1):38–43

    Article  CAS  PubMed  Google Scholar 

  59. Rein AJ, Preminger TJ, Perry SB, Lock JE, Sanders SP (1993) Generalized arteriopathy in Williams syndrome: an intravascular ultrasound study. J Am Coll Cardiol 21(7):1727–1730

    Article  CAS  PubMed  Google Scholar 

  60. Sadler LS, Gingell R, Martin DJ (1998) Carotid ultrasound examination in Williams syndrome. J Pediatr 132(2):354–356

    Article  CAS  PubMed  Google Scholar 

  61. Perou ML (1961) Congenital supravalvular aortic stenosis: a morphological study with attempt at classification. Arch Pathol 71:453–66

    CAS  PubMed  Google Scholar 

  62. O’Connor WN, Davis JB Jr, Geissler R, Cottrill CM, Noonan JA, Todd EP (1985) Supravalvular aortic stenosis: clinical and pathologic observations in six patients. Arch Pathol Lab Med 109(2):179–85

    CAS  PubMed  Google Scholar 

  63. Conway EE Jr, Noonan J, Marion RW, Steeg CN (1990) Myocardial infarction leading to sudden death in the Williams syndrome: report of three cases. J Pediatr 117(4):593–595

    Article  PubMed  Google Scholar 

  64. Merla G, Brunetti-Pierri N, Piccolo P, Micale L, Loviglio MN (2012) Supravalvular aortic stenosis: elastin arteriopathy. Circ Cardiovasc Genet 5(6):692–696

    Article  CAS  PubMed  Google Scholar 

  65. Szabo Z, Crepeau MW, Mitchell AL, Stephan MJ, Puntel RA, Yin Loke K et al (2006) Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. J Med Genet 43(3):255–258

    Article  CAS  PubMed  Google Scholar 

  66. Graul-Neumann LM, Hausser I, Essayie M, Rauch A, Kraus C (2008) Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene. Am J Med Genet A 146A(8):977–983

    Article  CAS  PubMed  Google Scholar 

  67. Callewaert B, Renard M, Hucthagowder V, Albrecht B, Hausser I, Blair E et al (2011) New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum Mutat 32(4):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jelsig AM, Urban Z, Hucthagowder V, Nissen H, Ousager LB (2017) Novel ELN mutation in a family with supravalvular aortic stenosis and intracranial aneurysm. Eur J Med Genet 60(2):110–113

    Article  PubMed  Google Scholar 

  69. Beyens A, Van Meensel K, Pottie L, De Rycke R, De Bruyne M, Baeke F et al (2019) Defining the clinical, molecular and ultrastructural characteristics in occipital horn syndrome: two new cases and review of the literature. Genes (Basel) 10(7):528

    Article  CAS  Google Scholar 

  70. Fujisawa C, Kodama H, Hiroki T, Akasaka Y, Hamanoue M (2019) ATP7A mutations in 66 Japanese patients with Menkes disease and carrier detection: a gene analysis. Pediatr Int 61(4):345–350

    Article  CAS  PubMed  Google Scholar 

  71. Loeys B, Van Maldergem L, Mortier G, Coucke P, Gerniers S, Naeyaert JM et al (2002) Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum Mol Genet 11(18):2113–2118

    Article  CAS  PubMed  Google Scholar 

  72. Guo DC, Regalado ES, Gong L, Duan X, Santos-Cortez RL, Arnaud P et al (2016) LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res 118(6):928–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103(6 Pt 1):2499–2509

    Article  CAS  PubMed  Google Scholar 

  74. Reinhardt DP, Chalberg SC, Sakai LY (1995) The structure and function of fibrillin. Ciba Found Symp 192:128–43 (discussion 43–7)

    CAS  PubMed  Google Scholar 

  75. Saruk M, Eisenstein R (1977) Aortic lesion in Marfan syndrome: the ultrastructure of cystic medial degeneration. Arch Pathol Lab Med 101(2):74–77

    CAS  PubMed  Google Scholar 

  76. Romaniello F, Mazzaglia D, Pellegrino A, Grego S, Fiorito R, Ferlosio A et al (2014) Aortopathy in Marfan syndrome: an update. Cardiovasc Pathol 23(5):261–266

    Article  PubMed  Google Scholar 

  77. Halme T, Savunen T, Aho H, Vihersaari T, Penttinen R (1985) Elastin and collagen in the aortic wall: changes in the Marfan syndrome and annuloaortic ectasia. Exp Mol Pathol 43(1):1–12

    Article  CAS  PubMed  Google Scholar 

  78. Wanga S, Hibender S, Ridwan Y, van Roomen C, Vos M, van der Made I et al (2017) Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome. J Pathol 243(3):294–306

    Article  CAS  PubMed  Google Scholar 

  79. Hucthagowder V, Sausgruber N, Kim KH, Angle B, Marmorstein LY, Urban Z (2006) Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Am J Hum Genet 78(6):1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dasouki M, Markova D, Garola R, Sasaki T, Charbonneau NL, Sakai LY et al (2007) Compound heterozygous mutations in fibulin-4 causing neonatal lethal pulmonary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. Am J Med Genet A 143A(22):2635–2641

    Article  CAS  PubMed  Google Scholar 

  81. Yanagisawa H, Davis EC (2010) Unraveling the mechanism of elastic fiber assembly: the roles of short fibulins. Int J Biochem Cell Biol 42(7):1084–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu Q, Loeys BL, Coucke PJ, De Paepe A, Mecham RP, Choi J et al (2006) Fibulin-5 mutations: mechanisms of impaired elastic fiber formation in recessive cutis laxa. Hum Mol Genet 15(23):3379–3386

    Article  CAS  PubMed  Google Scholar 

  83. Roark EF, Keene DR, Haudenschild CC, Godyna S, Little CD, Argraves WS (1995) The association of human fibulin-1 with elastic fibers: an immunohistological, ultrastructural, and RNA study. J Histochem Cytochem 43(4):401–411

    Article  CAS  PubMed  Google Scholar 

  84. Cangemi C, Skov V, Poulsen MK, Funder J, Twal WO, Gall MA, et al (2011) Fibulin-1 is a marker for arterial extracellular matrix alterations in type 2 diabetes. Clin Chem 57(11):1556–1565

    Article  CAS  PubMed  Google Scholar 

  85. Aspberg A, Adam S, Kostka G, Timpl R, Heinegard D (1999) Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem 274(29):20444–20449

    Article  CAS  PubMed  Google Scholar 

  86. Bohlega S, Al-Ajlan H, Al-Saif A (2014) Mutation of fibulin-1 causes a novel syndrome involving the central nervous system and conncetive tissues. Eur J Hum Genet 22(5):640–643

    Article  CAS  PubMed  Google Scholar 

  87. Donato AJ, Machin DR, Lesniewski LA (2018) Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res 123(7):825–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM (2016) Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol 32(5):659–668

    Article  PubMed  Google Scholar 

  89. Lacolley P, Regnault V, Segers P, Laurent S (2017) Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev 97(4):1555–1617

    Article  CAS  PubMed  Google Scholar 

  90. Palombo C, Kozakova M (2016) Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications. Vascul Pharmacol 77:1–7

    Article  CAS  PubMed  Google Scholar 

  91. Zarkovic K, Larroque-Cardoso P, Pucelle M, Kalvayre R, Waeg G, Nègre-Salvayre A et al (2015) Elastin aging and lipid oxidation products in human aorta. Redox Biol 4:109–117

    Article  CAS  PubMed  Google Scholar 

  92. Fhayli W, Boëté Q, Harki O, Briançon-Marjollet A, Jacob MP, Faury G (2019) Rise and fall of elastic fibers from development to aging: consequences on arterial structure-function and therapeutical perspectives. Matrix Biol 84:41–56

    Article  CAS  PubMed  Google Scholar 

  93. Heinz A (2020) Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol 55(3):252–273

    Article  CAS  PubMed  Google Scholar 

  94. Kuzan A, Wisniewski J, Maksymowicz K, Kobielarz M, Gamian A, Chwilkowska A (2021) Relationship between calcification, atherosclerosis and matrix proteins in the human aorta. Folia Histochem Cytobiol 59(1):8–21

    Article  PubMed  Google Scholar 

  95. John R, Thomas J (1972) Chemical compositions of elastins isolated from aortas and pulmonary tissues of humans of different ages. Biochem J 127(1):261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dernellis J, Panaretou M (2005) Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects. Hypertension 45(3):426–431

    Article  CAS  PubMed  Google Scholar 

  97. Najjar SS, Scuteri A, Shetty V, Wright JG, Muller DC, Fleg JL et al (2008) Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol 51(14):1377–1383

    Article  PubMed  PubMed Central  Google Scholar 

  98. Peralta CA, Adeney KL, Shlipak MG, Jacobs D Jr, Duprez D, Bluemke D et al (2010) Structural and functional vascular alterations and incident hypertension in normotensive adults: the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 171(1):63–71

    Article  PubMed  Google Scholar 

  99. Hornebeck W, Adnet JJ, Robert L (1978) Age dependent variation of elastin and elastase in aorta and human breast cancers. Exp Gerontol 13(5):293–298

    Article  CAS  PubMed  Google Scholar 

  100. Robert L, Jacob MP, Frances C, Godeau G, Hornebeck W (1984) Interaction between elastin and elastases and its role in the aging of the arterial wall, skin and other connective tissues: a review. Mech Ageing Dev 28(2–3):155–166

    Article  CAS  PubMed  Google Scholar 

  101. Osakabe T, Hayashi M, Hasegawa K, Okuaki T, Ritty TM, Mecham RP et al (2001) Age- and gender-related changes in ligament components. Ann Clin Biochem 38(Pt 5):527–532

    Article  CAS  PubMed  Google Scholar 

  102. Spina M, Garbin G (1976) Age-related chemical changes in human elastins from non-atherosclerotic areas of thoracic aorta. Atherosclerosis 24(1–2):267–279

    Article  CAS  PubMed  Google Scholar 

  103. Watanabe M, Sawai T, Nagura H, Suyama K (1996) Age-related alteration of cross-linking amino acids of elastin in human aorta. Tohoku J Exp Med 180(2):115–130

    Article  CAS  PubMed  Google Scholar 

  104. Lansing AI, Alex M, Rosenthal TB (1950) Atheromatosis as a sequel to senescent changes in the arterial wall. J Gerontol 5(1–4):314–318

    Article  CAS  PubMed  Google Scholar 

  105. Movat HZ, More RH, Haust MD (1958) The diffuse intimal thickening of the human aorta with aging. Am J Pathol 34(6):1023–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Andreotti L, Bussotti A, Cammelli D, di Giovine F, Sampognaro S, Sterrantino G et al (1985) Aortic connective tissue in ageing: a biochemical study. Angiology 36(12):872–879

    Article  CAS  PubMed  Google Scholar 

  107. Asciutto G, Dias NV, Edsfeldt A, Nitulescu M, Persson A, Nilsson M et al (2015) Low elastin content of carotid plaques is associated with increased risk of ipsilateral stroke. PLoS ONE 10(3):e0121086

    Article  PubMed  PubMed Central  Google Scholar 

  108. Le Page A, Khalil A, Vermette P, Frost EH, Larbi A, Witkowski JM et al (2019) The role of elastin-derived peptides in human physiology and diseases. Matrix Biol 84:81–96

    Article  PubMed  Google Scholar 

  109. Kamenskiy A, Poulson W, Sim S, Reilly A, Luo J, MacTaggart J (2018) Prevalence of calcification in human femoropopliteal arteries and its association with demographics, risk factors, and arterial stiffness. Arterioscler Thromb Vasc Biol 38(4):e48–e57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Spina M, Garbisa S, Hinnie J, Hunter JC, Serafini-Fracassini A (1983) Age-related changes in composition and mechanical properties of the tunica media of the upper thoracic human aorta. Arteriosclerosis 3(1):64–76

    Article  CAS  PubMed  Google Scholar 

  111. Toda T, Tsuda N, Nishimori I, Leszczynski DE, Kummerow FA (1980) Morphometrical analysis of the aging process in human arteries and aorta. Acta Anat (Basel) 106(1):35–44

    Article  CAS  Google Scholar 

  112. Shekhonin BV, Domogatsky SP, Idelson GL, Koteliansky VE, Rukosuev VS (1987) Relative distribution of fibronectin and type I, III, IV, V collagens in normal and atherosclerotic intima of human arteries. Atherosclerosis 67(1):9–16

    Article  CAS  PubMed  Google Scholar 

  113. Klynstra FB, Bottcher CJ, van Melsen JA, van der Laan EJ (1967) Distribution and composition of acid mucopolysaccharides in normal and atherosclerotic human aortas. J Atheroscler Res 7(3):301–309

    Article  CAS  PubMed  Google Scholar 

  114. Murata K, Yokoyama Y (1989) Acidic glycosaminoglycans in human atherosclerotic cerebral arterial tissues. Atherosclerosis 78(1):69–79

    Article  CAS  PubMed  Google Scholar 

  115. Ngai D, Lino M, Bendeck MP (2018) Cell-matrix interactions and matricrine signaling in the pathogenesis of vascular calcification. Front Cardiovasc Med 5:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cocciolone AJ, Hawes JZ, Staiculescu MC, Johnson EO, Murshed M, Wagenseil JE (2018) Elastin, arterial mechanics, and cardiovascular disease. Am J Physiol Heart Circ Physiol 315(2):H189–H205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rezvani-Sharif A, Tafazzoli-Shadpour M, Avolio A (2019) Mechanical characterization of the lamellar structure of human abdominal aorta in the development of atherosclerosis: an atomic force microscopy study. Cardiovasc Eng Technol 10(1):181–192

    Article  PubMed  Google Scholar 

  118. Rezvani-Sharif A, Tafazzoli-Shadpour M, Avolio A (2019) Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries. Med Biol Eng Comput 57(3):731–740

    Article  PubMed  Google Scholar 

  119. Wahart A, Hocine T, Albrecht C, Henry A, Sarazin T, Martiny L et al (2019) Role of elastin peptides and elastin receptor complex in metabolic and cardiovascular diseases. FEBS J 286(15):2980–2993

    Article  CAS  PubMed  Google Scholar 

  120. Tanno T, Yoshinaga K, Sato T (1993) Alteration of elastin in aorta from diabetics. Atherosclerosis 101(2):129–134

    Article  CAS  PubMed  Google Scholar 

  121. Moon HD, Rinehart JF (1952) Histogenesis of coronary arteriosclerosis. Circulation 6(4):481–488

    Article  CAS  PubMed  Google Scholar 

  122. Bobryshev YV, Lord RS, Warren BA (1995) Calcified deposit formation in intimal thickenings of the human aorta. Atherosclerosis 118(1):9–21

    Article  CAS  PubMed  Google Scholar 

  123. Roijers RB, Dutta RK, Cleutjens JP, Mutsaers PH, de Goeij JJ, van der Vusse GJ (2008) Early calcifications in human coronary arteries as determined with a proton microprobe. Anal Chem 80(1):55–61

    Article  CAS  PubMed  Google Scholar 

  124. Hutcheson JD, Goettsch C, Bertazzo S, Maldonado N, Ruiz JL, Goh W et al (2016) Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater 15(3):335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schwartz CJ, Mitchell JR (1962) The morphology, terminology and pathogenesis of arterial plaques. Postgrad Med J 38:25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6(2):131–138

    Article  CAS  PubMed  Google Scholar 

  127. Wasty F, Alavi MZ, Moore S (1993) Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia 36(4):316–322

    Article  CAS  PubMed  Google Scholar 

  128. Rauterberg J, Jaeger E, Althaus M (1993) Collagens in atherosclerotic vessel wall lesions. Curr Top Pathol 87:163–192

    CAS  PubMed  Google Scholar 

  129. Hector EE, Robins SP, Mercer DK, Brittenden J, Wainwright CL (2010) Quantitative measurement of mature collagen cross-links in human carotid artery plaques. Atherosclerosis 211(2):471–474

    Article  CAS  PubMed  Google Scholar 

  130. Roijers RB, Debernardi N, Cleutjens JP, Schurgers LJ, Mutsaers PH, van der Vusse GJ (2011) Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am J Pathol 178(6):2879–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tammi M, Seppala PO, Lehtonen A, Mottonen M (1978) Connective tissue components in normal and atherosclerotic human coronary arteries. Atherosclerosis 29(2):191–194

    Article  CAS  PubMed  Google Scholar 

  132. Shanahan CM, Cary NR, Salisbury JR, Proudfoot D, Weissberg PL, Edmonds ME (1999) Medial localization of mineralization-regulating proteins in association with Monckeberg’s sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 100(21):2168–2176

    Article  CAS  PubMed  Google Scholar 

  133. Stevens RL, Colombo M, Gonzales JJ, Hollander W, Schmid K (1976) The glycosaminoglycans of the human artery and their changes in atherosclerosis. J Clin Invest 58(2):470–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Heickendorff L, Ledet T, Rasmussen LM (1994) Glycosaminoglycans in the human aorta in diabetes mellitus: a study of tunica media from areas with and without atherosclerotic plaque. Diabetologia 37(3):286–292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Ms. Gema Souto, MHS for her continuing support.

Funding

There was no financial support for this work.

Author information

Authors and Affiliations

Authors

Contributions

MAA and LAC had the idea of the article, performed the literature search and drafted the manuscript. MAA, CFF, MGL, and RFC performed the data analysis. All authors critically revised the work for important intellectual content. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to María M. Adeva-Andany.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeva-Andany, M.M., Adeva-Contreras, L., Fernández-Fernández, C. et al. Elastic tissue disruption is a major pathogenic factor to human vascular disease. Mol Biol Rep 48, 4865–4878 (2021). https://doi.org/10.1007/s11033-021-06478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06478-8

Keywords

Navigation