Skip to main content

Advertisement

Log in

Physical exercise, obesity, inflammation and neutrophil extracellular traps (NETs): a review with bioinformatics analysis

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Neutrophil extracellular traps (NETs) represent an innate organism defense mechanism characterized by neutrophil release of intracellular material to capture any aggressor agent. Elevated NETs release is associated with increased inflammatory response and related diseases, such as obesity. Chronic physical training is one of the main strategies to treat and prevent obesity. The relationship between physical training and NETs is still under study. The present review, followed by a bioinformatics analysis, demonstrates the meaningful connection between physical exercise, obesity, and NETs. The bioinformatics indicated TNF-α as a leading gene after the ontological analysis followed by positive-interleukin-6 regulation, chemokines, and inflammatory response regulation. The main results pointed to a relevant regulatory effect of physical training on NETs release, indicating physical exercise as a possible therapeutic target on modulating NETs and inflammation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR (2014) Integrative biology of exercise. Cell 159(4):738–749

    CAS  PubMed  Google Scholar 

  2. Katzmarzyk PT, Janssen I (2004) The economic costs associated with physical inactivity and obesity in Canada: an update. Canadian Journal of Applied Physiology = Revue canadienne de physiologie appliquee 29(1):90–115

    PubMed  Google Scholar 

  3. Gregg EW, Pereira MA, Caspersen CJ (2000) Physical activity, falls, and fractures among older adults: a review of the epidemiologic evidence. J Am Geriatr Soc 48(8):883–893

    CAS  PubMed  Google Scholar 

  4. Grundy SM, Cleeman JI, Merz CNB, Brewer HB, Clark LT, Hunninghake DB, Pasternak RC, Smith SC, Stone NJ, Program CCotNCE (2004) Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. J Am Coll Cardiol 44(3):720–732

    PubMed  Google Scholar 

  5. Lautenschlager NT, Almeida OP (2006) Physical activity and cognition in old age. Curr Opin Psychiatry 19(2):190–193

    PubMed  Google Scholar 

  6. Manini TM, Everhart JE, Patel KV, Schoeller DA, Colbert LH, Visser M, Tylavsky F, Bauer DC, Goodpaster BH, Harris TB (2006) Daily activity energy expenditure and mortality among older adults. JAMA 296(2):171–179

    CAS  PubMed  Google Scholar 

  7. Warburton DE, Nicol CW, Bredin SS (2006) Health benefits of physical activity: the evidence. Canadian Medical Association journal = journal de l’Association medicale canadienne 174(6):801–809

    PubMed  Google Scholar 

  8. Gualano B, Sa Pinto AL, Perondi B, Leite Prado DM, Omori C, Almeida RT, Sallum AM, Silva CA (2010) Evidence for prescribing exercise as treatment in pediatric rheumatic diseases. Autoimmun Rev 9(8):569–573

    PubMed  Google Scholar 

  9. Lima LCF, Saliba SW, Andrade JMO, Cunha ML, Cassini-Vieira P, Feltenberger JD, Barcelos LS, Guimarães ALS, De-Paula AMB, de Oliveira ACP et al (2017) Neurodegeneration alters metabolic profile and sirt 1 signaling in high-fat-induced obese mice. Mol neurobiol 54(5):3465–3475

    CAS  PubMed  Google Scholar 

  10. Jorge ASB, Andrade JMO, Paraíso AF, Jorge GCB, Silveira CM, de Souza LR, Santos EP, Guimaraes ALS, Santos SHS, De-Paula AMB (2018) Body mass index and the visceral adipose tissue expression of IL-6 and TNF-alpha are associated with the morphological severity of non-alcoholic fatty liver disease in individuals with class III obesity. Obes Res Clin Pract 12(Suppl 2):1–8

    PubMed  Google Scholar 

  11. Soares Crespo T, Oliveira Andrade JM, Barcala Jorge AS, de Paula AMB, Sena Guimarães AL, Sousa Santos SH (2016) Effects of omentectomy in addition to sleeve gastrectomy on the metabolic and inflammatory profiles of obese rats. Surg Obes Relat Dis 12(7):1292–1299

    PubMed  Google Scholar 

  12. Freitas Lima LC, Braga VA, de Do Socorro FSM, Cruz JC, Sousa Santos SH, de OliveiraMonteiroBalarini MMCM (2015) Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 6:304

    PubMed  PubMed Central  Google Scholar 

  13. Ciolac EG, Guimarães GV (2004) Exercício físico e síndrome metabólica. Revista Brasileira de Medicina do Esporte 10(4):319–324. https://doi.org/10.1590/S1517-86922004000400009

  14. Lakka TA, Laaksonen DE, Lakka HM, Männikkö N, Niskanen LK, Rauramaa R, Salonen JT (2003) Sedentary lifestyle, poor cardiorespiratory fitness, and the metabolic syndrome. Med Sci Sports Exerc 35(8):1279–1286

    PubMed  Google Scholar 

  15. Dobbins M, Decorby K, Choi BC (2013) The association between obesity and cancer risk: a meta-analysis of observational studies from 1985 to 2011. ISRN Prev Med 2013:680536

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin-Rodriguez E, Guillen-Grima F, Martí A, Brugos-Larumbe A (2015) Comorbidity associated with obesity in a large population: the APNA study. Obes Res Clin Pract 9(5):435–447

    PubMed  Google Scholar 

  17. Wensveen FM, Valentić S, Šestan M, Turk Wensveen T, Polić B (2015) The “Big Bang” in obese fat: events initiating obesity-induced adipose tissue inflammation. Eur J Immunol 45(9):2446–2456

    CAS  PubMed  Google Scholar 

  18. Fruh SM (2017) Obesity: risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract 29(S1):S3-s14

    PubMed  PubMed Central  Google Scholar 

  19. Livhits M, Mercado C, Yermilov I, Parikh JA, Dutson E, Mehran A, Ko CY, Gibbons MM (2010) Behavioral factors associated with successful weight loss after gastric bypass. Am Surg 76(10):1139–1142

    PubMed  Google Scholar 

  20. Baar K (2006) Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc 38(11):1939–1944

    PubMed  Google Scholar 

  21. Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17(2):162–184

    CAS  PubMed  Google Scholar 

  22. Fox EL, Bartels RL, Billings CE, Mathews DK, Bason R, Webb WM (1973) Intensity and distance of interval training programs and changes in aerobic power. Med Sci Sports 5(1):18–22

    CAS  PubMed  Google Scholar 

  23. MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84(6):2138–2142

    CAS  PubMed  Google Scholar 

  24. Macpherson RE, Hazell TJ, Olver TD, Paterson DH, Lemon PW (2011) Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc 43(1):115–122

    PubMed  Google Scholar 

  25. da Silva FOC, Macedo DV (2011) Physical exercise, inflammatory process and adaptive condition: an overview. Braz J Kinanthropometry Hum Perform 13(4):320–328

    Google Scholar 

  26. Barnado A, Crofford LJ, Oates JC (2016) At the Bedside: neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol 99(2):265–278

    CAS  PubMed  Google Scholar 

  27. Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H, Choi JH, Choi Y, Shim S, Lyu IS et al (2017) Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev 16(11):1160–1173

    CAS  PubMed  Google Scholar 

  28. Zaldivar F, Wang-Rodriguez J, Nemet D, Schwindt C, Galassetti P, Mills PJ, Wilson LD, Cooper DM (2006) Constitutive pro-and anti-inflammatory cytokine and growth factor response to exercise in leukocytes. J Appl Physiol 100(4):1124–1133

    CAS  PubMed  Google Scholar 

  29. Smith LL (2004) Tissue trauma: the underlying cause of overtraining syndrome? J Strength Cond Res 18(1):185–193

    PubMed  Google Scholar 

  30. Shing CM, Peake J, Suzuki K, Okutsu M, Pereira R, Stevenson L, Jenkins DG, Coombes JS (2007) Effects of bovine colostrum supplementation on immune variables in highly trained cyclists. J Appl Physiol 102(3):1113–1122

    CAS  PubMed  Google Scholar 

  31. Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288(2):R345-353

    CAS  PubMed  Google Scholar 

  32. Gleeson M (2006) Immune function in sport and exercise. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  33. Speretta G, Leite R, Duarte A (2014) Obesidade, inflamação e exercício: foco sobre o TNF-alfa e IL-10. Revista Hospital Universitário Pedro Ernesto (TÍTULO NÃO-CORRENTE) 13(1). https://doi.org/10.12957/rhupe.2014.9807

  34. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615

    CAS  PubMed  Google Scholar 

  35. Beavers KM, Brinkley TE, Nicklas BJ (2010) Effect of exercise training on chronic inflammation. Clin Chim Acta 411(11–12):785–793

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Geffken DF, Cushman M, Burke GL, Polak JF, Sakkinen PA, Tracy RP (2001) Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol 153(3):242–250

    CAS  PubMed  Google Scholar 

  37. Pedersen BK (2011) Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun 25(5):811–816

    CAS  PubMed  Google Scholar 

  38. Oh EG, Bang SY, Kim SH, Hyun SS, Chu SH, Jeon JY, Im JA, Lee JE, Lee MK (2013) Therapeutic lifestyle modification program reduces plasma levels of the chemokines CRP and MCP-1 in subjects with metabolic syndrome. Biol Res Nurs 15(1):48–55

    CAS  PubMed  Google Scholar 

  39. Trøseid M, Lappegård KT, Claudi T, Damås JK, Mørkrid L, Brendberg R, Mollnes TE (2004) Exercise reduces plasma levels of the chemokines MCP-1 and IL-8 in subjects with the metabolic syndrome. Eur Heart J 25(4):349–355

    PubMed  Google Scholar 

  40. Shephard RJ, Shek PN (1994) Potential impact of physical activity and sport on the immune system—a brief review. Br J Sports Med 28(4):247–255

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith JA, Telford RD, Mason IB, Weidemann MJ (1990) Exercise, training and neutrophil microbicidal activity. Int J Sports Med 11(3):179–187

    CAS  PubMed  Google Scholar 

  42. Dufaux B, Order U (1989) Plasma elastase-α1-antitrypsin, neopterin, tumor necrosis factor, and soluble interleukin-2 receptor after prolonged exercise. Int J Sports Med 10(06):434–438

    CAS  PubMed  Google Scholar 

  43. Czaikoski PG, Mota JM, Nascimento DC, Sônego F, Castanheira FV, Melo PH, Scortegagna GT, Silva RL, Barroso-Sousa R, Souto FO et al (2016) Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS ONE 11(2):e0148142

    PubMed  PubMed Central  Google Scholar 

  44. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    CAS  PubMed  Google Scholar 

  45. Zawrotniak M, Rapala-Kozik M (2013) Neutrophil extracellular traps (NETs)—formation and implications. Acta Biochim Pol 60(3):277–284

    CAS  PubMed  Google Scholar 

  46. Rodrigues HG, Takeo Sato F, Curi R, Vinolo MAR (2016) Fatty acids as modulators of neutrophil recruitment, function and survival. Eur J Pharmacol 785:50–58

    CAS  PubMed  Google Scholar 

  47. Sangaletti S, Tripodo C, Chiodoni C, Guarnotta C, Cappetti B, Casalini P, Piconese S, Parenza M, Guiducci C, Vitali C (2012) Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood J Am Soc Hematol 120(15):3007–3018

    CAS  Google Scholar 

  48. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT, Wagner DD (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci 109(32):13076–13081

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175

    CAS  PubMed  Google Scholar 

  50. Beiter T, Fragasso A, Hudemann J, Schild M, Steinacker J, Mooren FC, Niess AM (2014) Neutrophils release extracellular DNA traps in response to exercise. J Appl Physiol 117(3):325–333

    CAS  PubMed  Google Scholar 

  51. de Oliveira PF, Farias LC, de Carvalho Fraga CA, Bambirra W Jr, Brito-Júnior M, Sousa-Neto MD, Santos SHS, de Paula AMB, D’Angelo MFSV, Guimarães ALS (2015) Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma. J Endod 41(6):877–883

    Google Scholar 

  52. Barone A, Toti P, Giuca MR, Derchi G, Covani U (2015) A gene network bioinformatics analysis for pemphigoid autoimmune blistering diseases. Clin Oral Invest 19(6):1207–1222

    Google Scholar 

  53. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D (1997) GeneCards: integrating information about genes, proteins and diseases. Trends in Genet 13(4):163

    CAS  Google Scholar 

  54. Bragazzi NL, Sivozhelezov V, Nicolini C (2011) Leader gene: a fast data-mining tool for molecular genomics. J Proteomics Bioinform 4(4):083–086

    Google Scholar 

  55. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Keshari RS, Jyoti A, Dubey M, Kothari N, Kohli M, Bogra J, Barthwal MK, Dikshit M (2012) Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS ONE 7(10):e48111

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Patel S, Kumar S, Jyoti A, Srinag BS, Keshari RS, Saluja R, Verma A, Mitra K, Barthwal MK, Krishnamurthy H et al (2010) Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 22(3):226–234

    CAS  PubMed  Google Scholar 

  59. Pattison DI, Davies MJ (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 13(27):3271–3290

    CAS  PubMed  Google Scholar 

  60. Dinarello CA (1997) Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock. Chest 112(6 Suppl):321S-329S

    CAS  PubMed  Google Scholar 

  61. Fortin CF, McDonald PP, Fulop T, Lesur O (2010) Sepsis, leukocytes, and nitric oxide (NO): an intricate affair. Shock 33(4):344–352

    CAS  PubMed  Google Scholar 

  62. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49(1):88–98 (98 e81–82)

    PubMed  Google Scholar 

  63. Wang H, Wang C, Zhao MH, Chen M (2015) Neutrophil extracellular traps can activate alternative complement pathways. Clin Exp Immunol 181(3):518–527

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma Y-H, Ma T-T, Wang C, Wang H, Chang D-Y, Chen M, Zhao M-H (2016) High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation. Arthritis Res Ther 18(1):2

    PubMed  PubMed Central  Google Scholar 

  65. Berezin A (2016) The neutrophil extracellular traps: the missed link between microvascular inflammation and diabetes. Metabolomics 6(163):2153–0769 (100016)

    Google Scholar 

  66. Zicker MC, Silveira ALM, Lacerda DR, Rodrigues DF, Oliveira CT, de Souza Cordeiro LM, Lima LCF, Santos SHS, Teixeira MM, Ferreira AVM (2019) Virgin coconut oil is effective to treat metabolic and inflammatory dysfunction induced by high refined carbohydrate-containing diet in mice. J Nutr Biochem 63:117–128

    CAS  PubMed  Google Scholar 

  67. Jorge AS, Jorge GC, Paraíso AF, Franco RM, Vieira LJ, Hilzenderger AM, Guimarães AL, Andrade JM, De-Paula AM, Santos SH (2017) Brown and white adipose tissue expression of IL6, UCP1 and SIRT1 are associated with alterations in clinical, metabolic and anthropometric parameters in obese humans. Exp Clin Endocrinol Diabetes 125(3):163–170

    CAS  PubMed  Google Scholar 

  68. Pinheiro TA, Barcala-Jorge AS, Andrade JMO, Pinheiro TA, Ferreira ECN, Crespo TS, Batista-Jorge GC, Vieira CA, Lelis DF, Paraíso AF et al (2017) Obesity and malnutrition similarly alter the renin-angiotensin system and inflammation in mice and human adipose. J Nutr Biochem 48:74–82

    CAS  PubMed  Google Scholar 

  69. Freire RH, Fernandes LR, Silva RB, Coelho BS, de Araújo LP, Ribeiro LS, Andrade JM, Lima PM, Araújo RS, Santos SH et al (2016) Wheat gluten intake increases weight gain and adiposity associated with reduced thermogenesis and energy expenditure in an animal model of obesity. Int J Obes 40(3):479–486

    CAS  Google Scholar 

  70. Nimmo M, Leggate M, Viana J, King J (2013) The effect of physical activity on mediators of inflammation. Diabetes Obes Metab 15(s3):51–60

    CAS  PubMed  Google Scholar 

  71. Lira FS, Rosa JC, Pimentel GD, Tarini VA, Arida RM, Faloppa F, Alves ES, Do Nascimento CO, Oyama LM, Seelaender M et al (2010) Inflammation and adipose tissue: effects of progressive load training in rats. Lipids Health Dis 9:109

    PubMed  PubMed Central  Google Scholar 

  72. Wang J, Polaki V, Chen S, Bihl JC (2020) Exercise improves endothelial function associated with alleviated inflammation and oxidative stress of perivascular adipose tissue in type 2 diabetic mice. Oxid Med Cell Longev 2020:8830537

    PubMed  PubMed Central  Google Scholar 

  73. Smith TTG, Barr-Gillespie AE, Klyne DM, Harris MY, Amin M, Paul RW, Cruz GE, Zhao H, Gallagher S, Barbe MF (2020) Forced treadmill running reduces systemic inflammation yet worsens upper limb discomfort in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet Disord 21(1):57

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Silva J, Stone W, Honorato FS, Deus LA, Prestes J, Simões HG, Vieira EC, de Melo GF, Moraes MR, Rosa TS (2020) Resistance training improves sleep quality, redox balance and inflammatory profile in maintenance hemodialysis patients: a randomized controlled trial. Sci Rep 10(1):11708. https://doi.org/10.1038/s41598-020-68602-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shokouhi G, Ahmadiasl N, Roshangar L, Ghorbanihaghjo A, Sheikhzadeh F, Mesgari M, Kosari-Nasab M (2020) Long term treadmill exercise affects age-related oxidative stress in the spinal cord of rats. Comp Exerc Physiol. https://doi.org/10.3920/CEP200031

Download references

Funding

This work was partially supported by grants from Coordenadoria de Aperfeiçoamento do Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Contributions

BS: conceptualization, methodology, writing—original draft. DF, RMJ, IM, JS, VG: writing—original draft. SS: conceptualization, writing—review & editing, Supervision.

Corresponding author

Correspondence to Sérgio Henrique Sousa Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Consent to submit has been received explicitly from all co-authors, as well as from the responsible authorities—tacitly or explicitly—at the institute/organization where the work has been carried out, before the work is submitted.

Consent to publish

The Author transfers to Molecular Biology Reports the publication rights and he warrants that his/her contribution is original and that he/she has full power to make this grant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valeria Oliveira de Sousa, B., de Freitas, D.F., Monteiro-Junior, R.S. et al. Physical exercise, obesity, inflammation and neutrophil extracellular traps (NETs): a review with bioinformatics analysis. Mol Biol Rep 48, 4625–4635 (2021). https://doi.org/10.1007/s11033-021-06400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06400-2

Keywords

Navigation