Skip to main content
Log in

Conservation of floral, fruit and chromosomal diversity: a review on diploid and polyploid Capsicum annuum complex in India

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Capsicum as a spice crop, has wild and cultivated forms admired globally, including Indian subcontinent with vast climatic ranges. Systematic representation of the Indian Capsicum is required to address species relationships and sustainable agriculture, in face of unpredictable climatic conditions. We have updated the catalogue of Indian ‘C. annuum complex’ with 28 landraces and populations from different agro-climatic regions. The agro-climatic influence on the origin of stable chili landraces in India is remarkable, especially in the North East. The floral and fruit morphotype standards and chromosomal attributes have been considered for four distinct ‘C. annuum complex’ members under three species. The highlights of study are: (1) comparative profiling of Indian Capsicum species revealing less infraspecific variation within C. frutescens and C. chinense than C. annuum, at par with cultivation status, (2) karyotype analysis of some unique diploid landraces of C. annuum, (3) karyotypic confirmation of the polyploid Dalle Khursani landraces exclusive to India. To obtain more information, we attempted to correlate diversity of fruit and floral morphotype with chromosomal diversity. Existence of elite and rare germplasm found in the regional pockets offer great scope for enriching the agricultural tradition. The present dataset may serve as a template to be continuously upgraded by taxonomists, genomicists and breeders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wall MM, Bosland PW (1998) Analytical methods for color and pungency of chiles (capsicums). Developments in food science. Elsevier, Amsterdam, pp 347–373

    Google Scholar 

  2. Walsh BM, Hoot SB (2001) Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB-rbcL spacer region and nuclear waxy introns. Int J Plant Sci 162:1409–1418

    Article  CAS  Google Scholar 

  3. Jarret RL, Barboza GE, da Costa Batista FR, Berke T, Chou YY, Hulse-Kemp A, Ochoa-Alejo N, Tripodi P, Veres A, Garcia CC, Csillery G (2019) Capsicum—an abbreviated compendium. J Am Soc Hortic Sci 144:3–22

    Article  Google Scholar 

  4. Perry L, Dickau R, Zarrillo S, Holst I, Pearsall DM, Piperno DR, Berman MJ, Cooke RG, Rademaker K, Ranere AJ, Raymond JS (2007) Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986–988

    Article  CAS  PubMed  Google Scholar 

  5. Bosland PW, Votava EJ (2012) Seeds. Peppers: vegetable and spice capsicums edition 2. CAB International Publishing, New York, pp 55–65

    Chapter  Google Scholar 

  6. Noss CF, Levey DJ (2014) Does gut passage affect post-dispersal seed fate in a wild chili, Capsicum annuum? Southeast Nat 13:475–483

    Article  Google Scholar 

  7. Carrizo García C, Barfuss MH, Sehr EM, Barboza GE, Samuel R, Moscone EA, Ehrendorfer F (2016) Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann Bot 118:35–51

    Article  PubMed  PubMed Central  Google Scholar 

  8. Perry L, Flannery KV (2017) Precolumbian use of chili peppers in the valley of Oaxaca, Mexico. Proc Natl Acad Sci 104:11905–11909

    Article  CAS  Google Scholar 

  9. Andrews J (1995) Peppers: the domesticated Capsicums. University of Texas Press, Austin

    Google Scholar 

  10. Dhaliwal MS (2007) Solanaceous vegetables. Handbook of vegetable crops, Kalyani Publishers, Ludhiana, pp 34–76

    Google Scholar 

  11. Tripodi P, Kumar S (2019) The capsicum crop: an introduction. In: Kole C, Ramchiary N (eds) The Capsicum genome. Springer, Cham, pp 1–8

    Google Scholar 

  12. Barboza GE, Carrizo García C, Leiva González S, Scaldaferro M, Reyes X (2019) Four new species of Capsicum (Solanaceae) from the tropical Andes and an update on the phylogeny of the genus. PLoS ONE 14:e0209792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bosland PW, Votava EJ (2000) Peppers–vegetable and spice Capsicum. Crop production science in horticulture. CAB International Publishing, New York

    Google Scholar 

  14. Park YK, Park KC, Park CH, Kim NS (2000) Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Mol Cells 10:18–24

    Article  CAS  PubMed  Google Scholar 

  15. Baral JB, Bosland PW (2004) Unraveling the species dilemma in Capsicum frutescens and C. chinense (Solanaceae): a multiple evidence approach using morphology, molecular analysis, and sexual compatibility. J Am Soc Hortic Sci 129:826–832

    Article  Google Scholar 

  16. Jarret RL, Dang P (2004) Revisiting the waxy locus and the Capsicum annuum L. complex. Ga J Sci 62:118

    Google Scholar 

  17. Ryzhova NN, Kochieva EZ (2004) Analysis of microsatellite loci of the chloroplast genome in the genus Capsicum (pepper). Russ J Genet 40:892–896

    Article  CAS  Google Scholar 

  18. Pickersgill B (1988) The genus Capsicum: a multidisciplinary approach to the taxonomy of cultivated and wild plants. Biol Zent 107:381–389

    Google Scholar 

  19. González-Pérez S, Garcés-Claver A, Mallor C, de Miera LE, Fayos O, Pomar F, Merino F, Silvar C (2014) New insights into Capsicum spp relatedness and the diversification process of Capsicum annuum in Spain. PLoS ONE 9:e116276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Baral JB, Bosland PW (2002) Genetic diversity of a Capsicum germplasm collection from Nepal as determined by randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci 127:316–324

    Google Scholar 

  21. Bosland PW, Baral JB (2007) ‘Bhut Jolokia’—the world’s hottest known chile pepper is a putative naturally occurring interspecific hybrid. Hortic Sci 42:222–224

    CAS  Google Scholar 

  22. Ravishankar GA, Suresh B, Giridhar P, Rao SR, Johnson TS (2003) Biotechnological studies on Capsicum for metabolite production and plant improvement. In: De AK (ed) Capsicum: the genus Capsicu. CRC Press, Harwood Academic Publishers, Boca Raton, pp 96–128

    Google Scholar 

  23. Reddy MK, Srivastava A, Kumar S, Kumar R, Chawda N, Ebert AW, Vishwakarma M (2014) Chili (Capsicum annuum L.) breeding in India: an overview. SABRAO J Breed Genet 46:160–173

    Google Scholar 

  24. Hunziker AT (1979) South American Solanaceae: a synoptic survey. In: Hawkes J, Glester RN, Skelding AD (eds) The biology and taxonomy of the Solanacea. Academic Press, London, pp 49–85

    Google Scholar 

  25. Moscone EA, Scaldaferro MA, Grabiele M, Cecchini NM, Sánchez García Y, Jarret R, Daviña JR, Ducasse DA, Barboza GE, Ehrendorfer F (2007) The evolution of chili peppers (Capsicum-Solanaceae): a cytogenetic perspective. In: Spooner DM et al. (eds) VI’ International Solanaceae Conference. Acta Hortic 745:137–170

    Article  CAS  Google Scholar 

  26. Ince AG, Karaca M, Onus AN (2010) Genetic relationships within and between Capsicum species. Biochem Genet 48:83–95

    Article  CAS  PubMed  Google Scholar 

  27. Zhigila DA, Abdul Rahaman AA, Kolawole OS, Oladele FA (2014) Fruit morphology as taxonomic features in five varieties of Capsicum annuum L Solanaceae. J Bot 2014:1–6

    Article  Google Scholar 

  28. Jha TB, Saha PS (2017) Characterization of some Indian Himalayan Capsicums through floral morphology and EMA-based chromosome analysis. Protoplasma 254:921–933

    Article  PubMed  Google Scholar 

  29. Wang D, Bosland PW (2006) The genes of Capsicum. Hortic Sci 41:1169–1187

    CAS  Google Scholar 

  30. van Zonneveld M, Ramirez M, Williams DE, Petz M, Meckelmann S, Avila T, Bejarano C, Ríos L, Peña K, Jäger M, Libreros D (2015) Screening genetic resources of Capsicum peppers in their primary center of diversity in Bolivia and Peru. PLoS ONE 10:e0134663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Moreira AF, Ruas PM, de Fátima RC, Baba VY, Giordani W, Arruda IM, Rodrigues R, Gonçalves LSA (2018) Genetic diversity, population structure and genetic parameters of fruit traits in Capsicum chinense. Sci Hortic 236:1–9

    Article  CAS  Google Scholar 

  32. Igwe DO, Afiukwa CA, Acquaah G, Ude GN (2019) Genetic diversity and structure of Capsicum annuum as revealed by start codon targeted and directed amplified minisatellite DNA markers. Hereditas 156:32

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alvares Bianchi P, Renata Almeida da Silva L, André da Silva Alencar A, Henrique Araújo Diniz -Santos P, Pimenta S, Pombo Sudré C, Corte ED, Simões Azeredo Gonçalves L, Rodrigues R (2020) Biomorphological characterization of Brazilian Capsicum chinense Jacq germplasm. Agronomy 10:447

    Article  Google Scholar 

  34. Lee HY, Ro NY, Patil A, Lee JH, Kwon JK, Kang BC (2020) Uncovering candidate genes controlling major fruit-related traits in pepper via genotype-by-sequencing based QTL mapping and genome-wide association study. Front Plant Sci 11:1100

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genom Res 120:339–350

    Article  CAS  Google Scholar 

  36. Soza VL, Haworth KL, Di Stilio VS (2013) Timing and consequences of recurrent polyploidy in meadow-rues (Thalictrum, Ranunculaceae). MBE 30:1940–1954

    Article  CAS  Google Scholar 

  37. Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then and now: Stebbins revisited. Am J Bot 101:1057–1078

    Article  PubMed  Google Scholar 

  38. Mota L, Torices R, Loureiro J (2016) The evolution of haploid chromosome numbers in the sunflower family. GBE 8:3516–3528

    PubMed  PubMed Central  Google Scholar 

  39. Viruel J, Kantar MB, Gargiulo R, Hesketh-Prichard P, Leong N, Cockel C, Forest F, Gravendeel B, Pérez-Barrales R, Leitch IJ, Wilkin P (2021) Crop wild phylorelatives (CWPs): phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Bot J Linn Soc 195:1–33

    Article  Google Scholar 

  40. Weiss-Schneeweiss H, Schneeweiss GM (2013) Karyotype diversity and evolutionary trend in angiosperms. In: Leitch IJ, Greilhuber J, Dolezel J, Wendel JF (eds) Plant genome diversity physical structure, behavior and evolution of plant genomes, vol 2. Springer Verlag, Vienna, pp 209–230

    Chapter  Google Scholar 

  41. Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MD, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L (2019) Chromosomics: bridging the gap between genomes and chromosomes. Genes 10:627

    Article  CAS  PubMed Central  Google Scholar 

  42. Zhang P, Friebe B, Gill B, Park RF (2007) Cytogenetics in the age of molecular genetics. Aust J Agric Res 58:498–506

    Article  CAS  Google Scholar 

  43. Liehr T (2017) Classical cytogenetics” is not equal to “banding cytogenetics. Mol Cytogenet 10:3. https://doi.org/10.1186/s13039-017-0305-9

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pickersgill B (1997) Genetic resources and breeding of Capsicum. Euphytica 96:129–133

    Article  Google Scholar 

  45. Moscone EA, Lambrou M, Hunziker AT, Ehrendorfer F (1993) Giemsa C- banded karyotypes in Capsicum (Solanaceae). Plant Syst Evol 186:213–229

    Article  Google Scholar 

  46. Moscone EA, Lambrou M, Ehrendorfer F (1996) Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202:37–63

    Article  Google Scholar 

  47. Moscone EA, Scaldaferro MA, Grabiele M, Romero MV, Debat H, Seijo JG, Acosta MC, Davina JR, Barboza GE, Ducasse DA (2011) Genomic characterization of the chili peppers (Capsicum, Solanaceae) germplasm by classical and molecular cytogenetics. Physical mapping technologies for the identification and characterization of mutated genes contributing to crop quality. International Atomic Energy Agency, Vienna, pp 97–104

    Google Scholar 

  48. Pozzobon MT, Schifino-Wittmann MT (2006) A meiotic study of the wild and semi-domesticated Brazilian species of genus Capsicum L. (Solanaceae). Cytologia 71:275–287

    Article  Google Scholar 

  49. Pozzobon MT, Schifino-Wittniann MT, Bianchetti LB (2006) Chromosome numbers in wild and semidomesticated Brazilian Capsicum L. (Solanaceae) species: do x= 12 and x= 13 represent two evolutionary lines? Bot J Linn Soc 151:259–269

    Article  Google Scholar 

  50. Scaldaferro MA, Seijo JG, Acosta MC, Barboza GE, Ducasse DA, Moscone EA (2006) Genomic characterization of the germplasm in peppers (Capsicum-Solanaceae) by fluorescent in situ hybridization. Plant Sci 43:291–297

    CAS  Google Scholar 

  51. Scaldaferro MA, Grabiele M, Moscone EA (2013) Heterochromatin type, amount and distribution in wild species of chili peppers (Capsicum, Solanaceae). Genet Resour Crop Evol 60:693–709

    Article  CAS  Google Scholar 

  52. Scaldaferro MA, da Cruz MVR, Cecchini NM, Moscone EA (2016) FISH and AgNOR mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae). Genome 59:95–113

    Article  CAS  PubMed  Google Scholar 

  53. Scaldaferro MA, Moscone EA (2019) Cytology and DNA content variation of Capsicum genomes. In: Ramchiary N, Kole C (eds) The Capsicum genome. Springer, Cham, pp 57–84

    Chapter  Google Scholar 

  54. Mathur R, Dangi RS, Dass SC, Malhotra RC (2000) The hottest chilli variety in India. Curr Sci 79:287–288

    Google Scholar 

  55. Misra AK, Manohar SS, Kumar A (2007) Characterization of indigenously collected germplasm of yellow sarson (B. rapa L. var. yellow sarson) for yield contributing traits. In: Tingdong FU, Chunyun G (eds) Proceedings of the 12th International Rapeseed Congress I. Genetics and Breeding. Science Press USA Inc, pp 280–283

  56. Singh RJ (2016) Plant cytogenetics. CRC Press, Boca Raton

    Book  Google Scholar 

  57. IPGRI, AVRDC, CATIE (1995) Descriptors for Capsicum (Capsicum spp.). International Plant Genetic Resources Institute, Rome, Italy; the Asian Vegetable Research and Development Center, Taipei, Taiwan, and the Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica. ISBN 92-9043-216-0

  58. Jha TB, Dafadar A, Ghoroi A (2012) New genetic resource in Capsicum L. from Eastern Himalayas. Plant Genet Resour 10:141–144

    Article  Google Scholar 

  59. Jha TB, Saha PS, Nath S, Das A, Jha S (2017) Morphological and cytogenetical characterization of ‘Dalle Khursani’: a polyploid cultivated Capsicum of India. Sci Hortic 215:80–90

    Article  Google Scholar 

  60. do Rêgo ER, do Rêgo MM (2016) Genetics and breeding of chili pepper Capsicum spp. In: do Rêgo ER, do Rêgo MM, Finger FL (eds) Production and breeding of chilli peppers (Capsicum spp). Springer International Publishing, Switzerland, pp 57–80

    Chapter  Google Scholar 

  61. Pinto CMF, dos Santos IC, de Araujo FF, da Silva TP (2016) Pepper importance and growth (Capsicum spp). In: do Rego ER, do Rêgo MM, Finger FL (eds) Production and breeding of chilli peppers (Capsicum spp.). Springer, Switzerland, pp 1–25

    Google Scholar 

  62. Pickersgill B (1984) Migration of chili peppers, Capsicum spp, in the Americas. In: Stone D (ed) Pre-Columbian plant migration. 631.5098 St711p Ej. 1

  63. Bosland PW (1993) An effective plant field cage to increase the production of genetically pure chile (Capsicum spp.) seed. HortScience 28:1053–1053

    Article  Google Scholar 

  64. Onus AN, Pickersgill B (2004) Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution. Ann Bot 94:289–295

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bhutia KL, Bhutia ND, Khanna VK (2019) Rich genetic diversity of Capsicum species in Northeast India, as a potential source for chilli crop improvement. J Agric For Meteorol Res 2:77–83

    Google Scholar 

  66. González-Salán MM, Bosland PW (1991) Sources of resistance to Verticillium wilt in Capsicum. Euphytica 59:49–53

    Article  Google Scholar 

  67. Huskins CL, La-Cour L (1930) Chromosome numbers in Capsicum. Am Nat 64:382–384

    Article  Google Scholar 

  68. Dixit PD (1931) A cytological study of Capsicum annuum. Indian J Agric Sci 1:419–433

    Google Scholar 

  69. Votava EJ, Baral JB, Bosland PW (2005) Genetic diversity of chile (Capsicum annuum var. annuum L.) landraces from northern New Mexico, Colorado, and Mexico. Econ Bot 59:8–17

    Article  Google Scholar 

  70. Castañón-Nájera G, Latournerie-Moreno L, Mendoza-Elos M, Vargas-López A, Cárdenas-Morales H (2008) Collection and characterization of chili (Capsicum spp.) in Tabasco, Mexico. Phyton 77:189–202

    Article  Google Scholar 

  71. Pérez Castañeda LM, Castañón Nájera G, Mayek Pérez N (2008) Morphological diversity of chili peppers (Capsicum spp.) from Tabasco, Mexico. Biodivers Noteb 27:11–22

    Google Scholar 

  72. Moscone EA (1990) Chromosome studies on Capsicum (Solanaceae) I. Karyotype analysis in C chacoënse. Brittonia 42:147–154

    Article  Google Scholar 

  73. Lambrou M, Hunziker AT, Ehrendorfer F (1993) Giemsa C-banded karyotypes in Capsicum (Solanaceae). Plant Syst Evol 186:213–229

    Article  Google Scholar 

  74. Lanteri S, Pickersgill B (1993) Chromosomal structural changes in Capsicum annuum L and C. chinense Jac. Euphytica 67:155–160

    Article  Google Scholar 

  75. Loidl J, Ehrendorfer F, Hunziker AT (1995) Analysis of active nucleolus organizing regions in Capsicum (Solanaceae) by silver staining. Am J Bot 82:276–287

    Article  Google Scholar 

  76. Rohami M, Mohammadi A, Mahmood K, Ahmadi H, Daraneh N (2010) Karyotype analysis of several ecotypes of Capsicum annuum L. in Iran. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38:177–180

    Google Scholar 

  77. Barboza GE, Agra MF, Romero MV, Scaldaferro MA, Moscone EA (2011) New endemic species of Capsicum (Solanaceae) from the Brazilian Caatinga: comparison with the re-circumscribed C. parvifolium. Syst Bot 36:768–781

    Article  Google Scholar 

  78. Ibiza VP, Blanca J, Cañizares J, Nuez F (2012) Taxonomy and genetic diversity of domesticated Capsicum species in the Andean region. Genet Resour Crop Evol 59:1077–1088

    Article  Google Scholar 

  79. Sousa WRDN, Lopes ACDA, Carvalho RD, Gomes RLF, Peron AP (2015) Karyotypic characterization of Capsicum sp. accessions. Acta Sci Agron 37:147–153

    Article  Google Scholar 

  80. Romero-da Cruz MV, Urdampilleta JD, Forni Martins ER, Moscone EA (2017) Cytogenetic markers for the characterization of Capsicum annuum L. cultivars. Plant Biosyst 151:84–91

    Google Scholar 

  81. Souza-Macedo VD, García-Dávila MA, Castro GR, Garzón-Bautista YM, Caetano CM (2017) Cytogenetic evaluation of chili (Capsicum spp., Solanaceae) genotypes cultivated in Valle del Cauca, Colombia. Acta Agronómica 66:612–617

    Article  Google Scholar 

  82. Grabiele M, Debat HJ, Scaldaferro MA, Aguilera PM, Moscone EA, Seijo JG, Ducasse DA (2018) Highly GC-rich heterochromatin in chili peppers (Capsicum-Solanaceae): a cytogenetic and molecular characterization. Sci Hortic 238:391–399

    Article  CAS  Google Scholar 

  83. Raghavan TS, Venkatasubban KP (1940) Studies in the S. Indian chillies I. Proc Indian Acad Sci 12:29–46

    Article  Google Scholar 

  84. Chennaveeraiah MS, Habib AF (1966) Recent advances in cytogenetics of Capsicums. Proc Autumn Sch Bot, pp 69–90

  85. Datta PC (1968) Karyology of Indian varieties of Capsicum annuum Linn. (Solanaceae). Caryologia 21:121–126

    Article  Google Scholar 

  86. Chennaveeraiah MS, Habib AF (1973) Cytomorphological studies in a spontaneous triploid of Capsicum annuum L. Cytologia 38:677–685

    Article  Google Scholar 

  87. Reddi MV, Rao GM (1974) Somatic karyotype and chiasma frequency in Capsicum annuum L. Cytologia 39:581–584

    Article  Google Scholar 

  88. Limaye VA, Patil VP (1989) Karyomorphological studies in the genus Capsicum Linn. Cytologia 54:455–463

    Article  Google Scholar 

  89. Neeti C, Verma S, Sharma N (2010) Genetic Systems in chillies II. Meiotic System of three cultivars of Capsicum annuum L. Caryologia 63:1–10

    Article  Google Scholar 

  90. Cheema SK, Pant MR (2013) Karyotype analysis of seven cultivated varieties of Capsicum annuum L. Caryologia 66:70–75

    Article  Google Scholar 

  91. Haque SM, Paul S, Ghosh B (2016) Karyological studies of two hot chilli pepper cultivars from two different geographical regions of India: Bhut jolokia, Capsicum chinense Jacq. and Bullet Lanka Capsicum annuum L. Nucleus 59:227–233

    Article  Google Scholar 

  92. Jha TB, Bhowmick BK (2021) Unravelling the genetic diversity and phylogenetic relationships of Indian Capsicum through fluorescent banding. Genet Resour Crop Evol 68:205–225

    Article  CAS  Google Scholar 

  93. Phulari SS, Dixit GB (1996) Cytological studies in Capsicum. I. Karyomorphological studies in parents and hybrids of Capsicum annuum and C. frutescens. Adv Plant Sci 9:111–119

    Google Scholar 

  94. Fukui K (1996) Plant chromosomes at mitosis. In: Fukui K, Nakayama S (eds) Plant chromosomes: laboratory methods. CRC Press Inc, Boca Raton, pp 1–17

    Google Scholar 

  95. Kurata N, Omura T (1978) Karyotype analysis in rice. 1. A new method for identifying all chromosome pairs. Jpn J Genet 53:251–255

    Article  Google Scholar 

  96. Fukui K, Iijima K (1991) Somatic chromosome map of rice by imaging methods. Theor Appl Genet 81:589–596

    Article  CAS  PubMed  Google Scholar 

  97. Yamamoto M, Takada N, Hirabayashi T, Kubo T, Tominaga S (2010) Fluorescent staining analysis of chromosomes in pear (Pyrus spp.). J Jpn Soc Hortic Sci 79:23–26

    Article  Google Scholar 

  98. Bhowmick BK, Jha TB, Jha S (2012) Chromosome analysis in the dioecious cucurbit Coccinia grandis (L.) Voigt. Chrom Sci 15:9–15

    CAS  Google Scholar 

  99. Jha TB, Halder M (2015) Searching chromosomal landmarks in Indian lentils through EMA based Giemsa staining method. Protoplasma 253:1223–1231

    Article  PubMed  Google Scholar 

  100. Bhowmick BK, Jha S (2015) Differential heterochromatin distribution, flow cytometric genome size and meiotic behavior of chromosomes in three Cucurbitaceae species. Sci Hortic 193:322–329

    Article  CAS  Google Scholar 

  101. Bhowmick BK, Jha S (2019) Differences in karyotype and fluorochrome banding patterns among variations of Trichosanthes cucumerina with different fruit size. Cytologia 84:1–10

    Article  CAS  Google Scholar 

  102. Ghosh I, Bhowmick BK, Jha S (2018) Cytogenetics of two Indian varieties of Momordica charantia L. (bittergourd). Sci Hortic 240:333–343

    Article  Google Scholar 

  103. Jha TB (2019) Karyotype analysis from aerial roots of Piper nigrum based on Giemsa and fluorochrome banding. Cytologia 84:313–317

    Article  CAS  Google Scholar 

  104. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditus 52:210–220

    Google Scholar 

  105. Harrison CJ, Alvey E, Henderson IR (2010) Meiosis in flowering plants and other green organisms. J Exp Bot 61:2863–2875

    Article  CAS  PubMed  Google Scholar 

  106. Lavinscky MP, Souza MM, Silva GS, Melo CAF (2017) Contributions of classical and molecular cytogenetic in meiotic analysis and pollen viability for plant breeding. Genet Mol Res. https://doi.org/10.4238/gmr16039582

    Article  PubMed  Google Scholar 

  107. Sharma AK, Sharma A (1980) Chromosome techniques. Theory and practice, 3rd edn. Butterworth and Co, London

    Google Scholar 

  108. Pickersgill B (1977) Chromosomes and evolution in Capsicum. Capsicum 77:27–37

    Google Scholar 

  109. Martins KC, Pereira TNS, Souza SAM, Rodrigues R, Amaral Junior ATD (2015) Crossability and evaluation of incompatibility barriers in crosses between Capsicum species. Crop Breed Appl Biotechnol 15:139–145

    Article  Google Scholar 

  110. da Costa Batista FR (2016) Cytogenetics in Capsicum L. In: do Rêgo ER, do Rêgo MM, Finger FL (eds) Production and breeding of chilli peppers (Capsicum spp. Springer International Publishing, Switzerland, pp 41–56

    Chapter  Google Scholar 

Download references

Acknowledgements

TBJ acknowledges the Principal, Dr. S. Dutta and Head, Dept. of Botany, Maulana Azad College for providing basic facilities.

Author information

Authors and Affiliations

Authors

Contributions

TJ and BKB equally contributed to writing the article.

Corresponding author

Correspondence to Biplab Kumar Bhowmick.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

(TIF 6283 kb). Comparative plant habits of some less cultivated diploid C. annuum (2n=24) landraces. a Karenga, b Kul (arrow points to inset showing enlarged fruit), c Kalo [arrow points to inset showing leaves of Aakashi (left) and Kalo (right)], d. Sada, e. Round (arrow points to inset showing fruit), f Ghee, g Dhani type I (Jalpaiguri), h Naga jolokia type I (Dibrugarh)

Supplementary file2

(TIF 12058 kb). Plant habits of polyploid (2n=48) C. annuum Dalle Khursani. a type III (Mungpoo), b type I (Darjeeling), c type VII (Jungi) with inset showing flowers and fruits, d type V (Takdah). e–h Leaves of Dalle Khursani populations, e type IV (Kolakham), f type VIII (Sikkim) in comparison with leaf of diploid Aakashi at right, g type VII (Jungi), h Dentate calyx margin and annular constriction at base of calyx (indicated by arrows) in Dalle Khursani flower (type IV, Kolakham). Bar 1cm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, T.B., Bhowmick, B.K. Conservation of floral, fruit and chromosomal diversity: a review on diploid and polyploid Capsicum annuum complex in India. Mol Biol Rep 48, 5587–5605 (2021). https://doi.org/10.1007/s11033-021-06355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06355-4

Keyword

Navigation