Skip to main content
Log in

Molecular and phytochemical variability among genus Albizia: a phylogenetic prospect for future breeding

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fabaceae, the third-largest Angiosperm family, exhibits great morphological diversity with significantly high species diversification rate. Albizia, one of the largest genera of the legume family, possesses high ecological, economical and medicinal application prospects and displays a global distribution. The taxonomic classification among Albizia remains, however, unclear and has been subjected to changes. The resolution of phylogenetic relationships among members of genus Albizia is a priority. Nine Albizia species cultivated in Egypt; Albizia lebbeck, A. julibrissin, A. odoratissima, A. procera, A. anthelmintica, A. guachapele, A. myriophylla, A. richardiana and A. lucida were subjected to molecular classification via DNA fingerprinting techniques viz. Inter Simple Sequence Repeat (ISSR) and Start Codon Targeted polymorphism (SCoT) using ten primers, five for each technique. The total number of bands produced by ISSR and SCoT primers was 28 and 40, respectively. The percentage of polymorphism varied from 64.28% in ISSR to 67.50% in SCoT analysis. Additionally, chemotaxonomic analysis was implemented based on UV spectroscopic profiling and total phenolic content coupled to unsupervised chemometric tools; Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). Interspecific relationships were confirmed via molecular and phytochemical analyses between A. procera and A. guachapele; A. lebbeck and A. odoratissima; and A. julibrissin and A. lucida. The study reveals that chemotaxonomic data can reflect phylogenetic relationships among examined Albizia species and provides insights to the significance of utilizing the strengths of both molecular taxonomy and chemotaxonomy to resolve phylogenetic relationship among this genus which offers baseline for breeding programs. Future strategies to enrich taxonomic classification among Albizia includes extensive morphological characterization, DNA barcoding techniques and metabolomic profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmad F, Anwar F, Hira S (2016) Review on medicinal importance of Fabaceae family. Pharmacologyonline 3:151–157

    Google Scholar 

  2. Group LPW (2013) Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62(2):217–248

    Article  Google Scholar 

  3. Magallon S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55(9):1762–1780

    Article  CAS  Google Scholar 

  4. Barneby RC (1991) Sensitivae censitae: a description of the genus Mimosa Linnaeus (Mimosaceae) in the New World, vol 65.

  5. Luckow M, White PJ, Bruneau A (2000) Relationships among the basal genera of mimosoid legumes. Adv Legume Syst 9:165–180

    Google Scholar 

  6. Brown GK (2008) Systematics of the tribe Ingeae (Leguminosae-Mimosoideae) over the past 25 years. Muelleria 26(1):27–42

    Google Scholar 

  7. Luckow M, Miller JT, Murphy DJ, Livshultz T (2003) A phylogenetic analysis of the Mimosoideae (Leguminosae) based on chloroplast DNA sequence data. Adv Legume Syst 10:197–220

    Google Scholar 

  8. Lewis G, Rico Arce MdL (2005) Tribe Ingeae. Legumes of the World 193–213

  9. Kokila K, Priyadharshini SD, Sujatha V (2013) Phytopharmacological properties of Albizia species: a review. Int J Pharm Pharm Sci 5(3):70–73

    CAS  Google Scholar 

  10. He Y, Wang Q, Ye Y, Liu Z, Sun H (2020) The ethnopharmacology, phytochemistry, pharmacology and toxicology of genus Albizia: a review. J Ethnopharmacol 257:112677

    Article  CAS  Google Scholar 

  11. Sulaiman C, Balachandran I (2012) Total phenolics and total flavonoids in selected Indian medicinal plants. Indian J Pharm Sci 74(3):258

    Article  CAS  Google Scholar 

  12. Aparajita S, Rout GR (2010) Molecular analysis of Albizia species using AFLP markers for conservation strategies. J Genet 89(1):95–99

    Article  CAS  Google Scholar 

  13. Kim W, Ji Y, Choi G, Kang Y, Yang S, Moon B (2016) Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences.

  14. Sun W, Li J-j, Xiong C, Zhao B, Chen S-l (2016) The potential power of Bar-HRM technology in herbal medicine identification. Front Plant Sci 7:367

    PubMed  PubMed Central  Google Scholar 

  15. Nunes C, Setotaw T, Pasqual M, Chagas E, Santos E, Santos D, Lima C, CANÇADO GdA (2017) Myrciaria dubia, an Amazonian fruit: population structure and its implications for germplasm conservation and genetic improvement. Embrapa Roraima-Artigo em periódico indexado (ALICE)

  16. Ghorbani S, Esmaeili H, Ebrahimi SN, Palazón J, Sonboli A, Mirjalili MH (2020) Genetic structure, molecular and phytochemical analysis in Iranian populations of Ruscus hyrcanus (Asparagaceae). Ind Crops Prod 154:112716

    Article  CAS  Google Scholar 

  17. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14(10):389–394

    Article  CAS  Google Scholar 

  18. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218

    Article  CAS  Google Scholar 

  19. Blair M, Panaud O, McCouch S (1999) Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet 98(5):780–792

    Article  CAS  Google Scholar 

  20. Vos P, Hogers R, Bleeker M, Reijans M, Tvd L, Hornes M, Friters A, Pot J, Paleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  Google Scholar 

  21. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560

    Article  CAS  Google Scholar 

  22. Reddy MP, Sarla N, Siddiq E (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128(1):9–17

    Article  Google Scholar 

  23. Kuras A, Korbin M (2004) Comparison of suitability of RAPD and ISSR techniques for determination of strawberry (Fragaria× ananassa Duch) relationship. Plant Cell Tissue Organ Cult 79(2):189–193

    Article  CAS  Google Scholar 

  24. Ramasetty BT, Bajpe SN, Kadappa SKK, Saini RK, Basavaraju SN, Ramachandra KK, Sripathy PH (2016) Identification and genetic diversity analysis of Memecylon species using ISSR, RAPD and gene-based DNA barcoding tools. Electron J Biotechnol 24:1–8

    Article  Google Scholar 

  25. Patel HK, Fougat RS, Kumar S, Mistry JG, Kumar M (2015) Detection of genetic variation in Ocimum species using RAPD and ISSR markers. 3 Biotech 5(5):697–707

    Article  Google Scholar 

  26. Collard BCY, Mackill DJ (2008) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Report 27(1):86. https://doi.org/10.1007/s11105-008-0060-5

    Article  CAS  Google Scholar 

  27. Jedrzejczyk I (2020) Genome size and SCoT markers as tools for identification and genetic diversity assessment in Echinacea genus. Ind Crops Prod 144:112055

    Article  CAS  Google Scholar 

  28. Golkar P, Nourbakhsh V (2019) Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT). Ind Crops Prod 130:170–178

    Article  CAS  Google Scholar 

  29. Rajesh M, Sabana A, Rachana K, Rahman S, Jerard B, Karun A (2015) Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. 3 Biotech 5(6):999–1006

    Article  CAS  Google Scholar 

  30. Gottlieb OR, Borin MRd (2000) Medicinal products: regulation of biosynthesis in space and time. Mem Inst Oswaldo Cruz 95(1):115–120

    Article  CAS  Google Scholar 

  31. Wink M, Botschen F, Gosmann C, Schäfer H, Waterman PG (2018) Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. Annual Plant Rev 364–433

  32. Mishra S, Gothecha V, Sharma A (2010) Albizia lebbeck: a short review. J Herbal Med Toxicol 4(2):9–15

    CAS  Google Scholar 

  33. Roy M, Yadav DK, Kumar B, Kaur J, Patel AK, Kumar N (2016) A review on phytochemical and pharmacological studies of Albizia julibrissin: an ornamental plant

  34. Ramaraj D, Rathinasamy G, Sivasamy VV (2018) Isolation of eupatorin (3′, 5-dihydroxy-4′, 6, 7-trimethoxyflavone) from Albizia odoratissima and its application for l-tryptophan sensing. Res Chem Intermed 44(11):6917–6931

    Article  CAS  Google Scholar 

  35. Mohamed TK, Nassar MI, Gaara AH, El-Kashak WA, Brouard I, El-Toumy SA (2013) Secondary metabolites and bioactivities of Albizia anthelmintica. Pharmacogn Res 5(2):80

    Article  Google Scholar 

  36. Joycharat N, Boonma C, Thammavong S, Yingyongnarongkul B-e, Limsuwan S, Voravuthikunchai SP (2016) Chemical constituents and biological activities of Albizia myriophylla wood. Pharm Biol 54(1):62–73. https://doi.org/10.3109/13880209.2015.1014920

    Article  CAS  PubMed  Google Scholar 

  37. Jolayemi OS, Ajatta MA, Adegeye AA (2018) Geographical discrimination of palm oils (Elaeis guineensis) using quality characteristics and UV-visible spectroscopy. Food Sci Nutr 6(4):773–782

    Article  CAS  Google Scholar 

  38. Gad HA, El-Ahmady SH, Abou-Shoer MI, Al-Azizi MM (2013) Application of chemometrics in authentication of herbal medicines: a review. Phytochem Anal 24(1):1–24

    Article  CAS  Google Scholar 

  39. Ibrahim N, Moussa AY (2020) Comparative metabolite profiling of Callistemon macropunctatus and Callistemon subulatus volatiles from different geographical origins. Ind Crops Prod 147:112222

    Article  CAS  Google Scholar 

  40. Ibrahim N, Moussa AY (2021) A comparative volatilomic characterization of Florence fennel from different locations: antiviral prospects. Food Funct 12(4):1498–1515

    Article  CAS  Google Scholar 

  41. Gad HA, El-Ahmady SH, Abou-Shoer MI, Al-Azizi MM (2013) A modern approach to the authentication and quality assessment of thyme using UV spectroscopy and chemometric analysis. Phytochem Anal 24(6):520–526

    Article  CAS  Google Scholar 

  42. Sima IA, Sârbu C, Naşcu-Briciu RD (2015) Use of TLC and UV–Visible spectrometry for fingerprinting of dietary supplements. Chromatographia 78(13–14):929–935

    Article  CAS  Google Scholar 

  43. Alexander PJ, Rajanikanth G, Bacon CD, Bailey CD (2007) Recovery of plant DNA using a reciprocating saw and silica-based columns. Mol Ecol Notes 7(1):5–9. https://doi.org/10.1111/j.1471-8286.2006.01549.x

    Article  CAS  Google Scholar 

  44. Sneath PH, Sokal RR (1973) Unweighted pair group method with arithmetic mean. Numer Taxon 230–234

  45. Yang X, Quiros C (1993) Identification and classification of celery cultivars with RAPD markers. Theor Appl Genet 86(2–3):205–212

    Article  CAS  Google Scholar 

  46. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Article  Google Scholar 

  47. Schofield P, Mbugua D, Pell A (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91(1–2):21–40

    Article  CAS  Google Scholar 

  48. Faheem SA, Saeed NM, El-Naga RN, Ayoub IM, Azab SS (2020) Hepatoprotective effect of cranberry nutraceutical extract in non-alcoholic fatty liver model in rats: impact on insulin resistance and Nrf-2 expression. Front Pharmacol 11:218. https://doi.org/10.3389/fphar.2020.00218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mabry TJ, Markham KR, Thomas MB (1970) The ultraviolet spectra of flavones and flavonols. In: Mabry TJ, Markham KR, Thomas MB (eds) The systematic identification of flavonoids. Springer, Berlin, pp 41–164

    Chapter  Google Scholar 

  50. Shinwari ZK, Jamil K, Zahra NB (2014) Molecular systematics of selected genera of subfamily Mimosoideae-Fabaceae. Pak J Bot 46(2):591–598

    Google Scholar 

Download references

Acknowledgements

Sincere gratitude to Mrs Threase Labib, taxonomist in the Agricultural Museum, Giza for authentication and identification of plant samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehal Ibrahim.

Ethics declarations

Conflict of interest

None.

Ethical statement

No animal or human subjects were used in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khodary, Y.A., Ayoub, I.M., El-Ahmady, S.H. et al. Molecular and phytochemical variability among genus Albizia: a phylogenetic prospect for future breeding. Mol Biol Rep 48, 2619–2628 (2021). https://doi.org/10.1007/s11033-021-06316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06316-x

Keywords

Navigation