Skip to main content

Advertisement

Log in

Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Endosomes and lysosomes are membrane-bound organelles crucial for the normal functioning of the eukaryotic cell. The primary function of endosomes relates to the transportation of extracellular material into the intracellular domain. Lysosomes, on the other hand, are primarily involved in the degradation of macromolecules. Endosomes and lysosomes interact through two distinct pathways: kiss-and-run and direct fusion. In addition to the internalization of particles, endosomes also play an important role in cell signaling and autophagy. Disruptions in either of these processes may contribute to cancer development. Lysosomal proteins, such as cathepsins, can play a role in both tumorigenesis and cancer cell apoptosis. Since endosomal and lysosomal biogenesis and signaling are important components of normal cellular growth and proliferation, proteins involved in these processes are attractive targets for cancer research and, potentially, therapeutics. This literature review provides an overview of the endocytic pathway, endolysosome formation, and the interplay between endosomal/lysosomal biogenesis and carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Helenius A, Mellman I, Wall D, Hubbard A (1983) Endosomes Trends in Biochemical Sciences 8(7):245–250

    CAS  Google Scholar 

  2. Conte A, Sigismund S (2016) Chapter six-the ubiquitin network in the control of EGFR Endocytosis and Signaling. In: Progress in molecular biology and translational science, vol 141. Elsevier, pp 225–276

  3. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis Physiological reviews 77(3):759–803

    CAS  PubMed  Google Scholar 

  5. Kural C, Kirchhausen T (2012) Live-cell imaging of clathrin coats. In: Methods in enzymology, vol 505. Elsevier, pp 59–80

  6. Hansen CG, Nichols BJ (2009) Molecular mechanisms of clathrin-independent endocytosis. Journal of cell science 122(11):1713–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3(5):473–483

    CAS  PubMed  Google Scholar 

  8. Fittipaldi A, Ferrari A, Zoppé M, Arcangeli C, Pellegrini V, Beltram F, Giacca M (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278(36):34141–34149

    CAS  PubMed  Google Scholar 

  9. Cheng Z-J, Deep Singh R, Marks DL, Pagano RE (2006) Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids. Mol Membr Biol 23(1):101–110

    CAS  PubMed  Google Scholar 

  10. Schmitter T, Agerer F, Peterson L, Münzner P, Hauck CR (2004) Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens. The Journal of experimental medicine 199(1):35–46

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17(1):593–623

    CAS  PubMed  Google Scholar 

  12. Ravetch JV, Clynes RA (1998) Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 16(1):421–432

    CAS  PubMed  Google Scholar 

  13. Tjelle TE, Løvdal T, Berg T (2000) Phagosome dynamics and function. Bioessays 22(3):255–263

    CAS  PubMed  Google Scholar 

  14. Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366(3):689–704

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Berón W, Alvarez-Dominguez C, Mayorga L, Stahl PD (1995) Membrane trafficking along the phagocytic pathway. Trends in cell biology 5(3):100–104

    PubMed  Google Scholar 

  16. Qualmann B, Mellor H (2003) Regulation of endocytic traffic by Rho GTPases. Biochem J 371(Pt 2):233

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nature reviews Molecular cell biology 9(8):639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mooren OL, Galletta BJ, Cooper JA (2012) Roles for actin assembly in endocytosis. Annual review of biochemistry 81:661–686

    CAS  PubMed  Google Scholar 

  19. Scott CC, Vacca F, Gruenberg J Endosome maturation, transport and functions. In: Seminars in cell & developmental biology (2014) Elsevier, pp 2–10

  20. Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M (1999) Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1(6):376–382

    CAS  PubMed  Google Scholar 

  21. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749

    CAS  PubMed  Google Scholar 

  22. Vonderheit A, Helenius A (2005) Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS biology 3 (7)

  23. Williams RL, Urbé S (2007) The emerging shape of the ESCRT machinery. Nature reviews Molecular cell biology 8(5):355–368

    CAS  PubMed  Google Scholar 

  24. Raiborg C, Bache KG, Gillooly DJ, Madshus IH, Stang E, Stenmark H (2002) Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 4(5):394–398

    CAS  PubMed  Google Scholar 

  25. Sachse M, Urbé S, Oorschot V, Strous GJ, Klumperman J (2002) Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Molecular biology of the cell 13(4):1313–1328

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lim JP, Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89(8):836–843

    CAS  PubMed  Google Scholar 

  27. Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nature reviews Molecular cell biology 8(8):622–632

    CAS  PubMed  Google Scholar 

  28. De Duve C, Pressman B, Gianetto R, Wattiaux R, Appelmans F (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60(4):604

    PubMed Central  Google Scholar 

  29. Rajawat YS, Hilioti Z, Bossis I (2009) Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev 8(3):199–213

    CAS  PubMed  Google Scholar 

  30. Matteoni R, Kreis TE (1987) Translocation and clustering of endosomes and lysosomes depends on microtubules. J Cell Biol 105(3):1253–1265

    CAS  PubMed  Google Scholar 

  31. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annual review of biochemistry 55(1):663–700

    CAS  PubMed  Google Scholar 

  32. Boya P (2012) Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Signal 17(5):766–774

    CAS  PubMed  Google Scholar 

  33. Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature reviews Molecular cell biology 10(9):623–635

    CAS  PubMed  Google Scholar 

  34. Repnik U, Česen MH, Turk B (2013) The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol 5(1):a008755

    PubMed  PubMed Central  Google Scholar 

  35. Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Developmental cell 21(3):421–430

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bright NA, Gratian MJ, Luzio JP (2005) Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr Biol 15(4):360–365

    CAS  PubMed  Google Scholar 

  37. Conus S, Simon H-U (2008) Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol 76(11):1374–1382

    CAS  PubMed  Google Scholar 

  38. Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P (2011) TFEB links autophagy to lysosomal biogenesis. science 332(6036):1429–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nature reviews Molecular cell biology 15(3):155–162

    CAS  PubMed  Google Scholar 

  40. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS (2009) A gene network regulating lysosomal biogenesis and function. Science 325(5939):473–477

    CAS  PubMed  Google Scholar 

  41. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15(6):647–658

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hämälistö S, Jäättelä M (2016) Lysosomes in cancer—living on the edge (of the cell). Curr Opin Cell Biol 39:69–76

    PubMed  PubMed Central  Google Scholar 

  43. Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8(6):903–914

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5(1):483–525

    CAS  PubMed  Google Scholar 

  45. Howe CL, Granger BL, Hull M, Green SA, Gabel CA, Helenius A, Mellman I (1988) Derived protein sequence, oligosaccharides, and membrane insertion of the 120-kDa lysosomal membrane glycoprotein (lgp120): identification of a highly conserved family of lysosomal membrane glycoproteins. Proceedings of the National Academy of Sciences 85(20):7577–7581

    CAS  Google Scholar 

  46. Eskelinen E-L (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27(5–6):495–502

    CAS  PubMed  Google Scholar 

  47. Janvier K, Bonifacino JS (2005) Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Molecular biology of the cell 16(9):4231–4242

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Carlsson SR, Fukuda M (1992) The lysosomal membrane glycoprotein lamp-1 is transported to lysosomes by two alternative pathways. Arch Biochem Biophys 296(2):630–639

    CAS  PubMed  Google Scholar 

  49. Mari M, Bujny MV, Zeuschner D, Geerts WJ, Griffith J, Petersen CM, Cullen PJ, Klumperman J, Geuze HJ (2008) SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9(3):380–393

    CAS  PubMed  Google Scholar 

  50. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature reviews Molecular cell biology 12(8):517

    CAS  PubMed  Google Scholar 

  51. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annual review of biochemistry 78:857–902

    CAS  PubMed  Google Scholar 

  52. Hu C-T, Wu J-R, Wu W-S (2013) The role of endosomal signaling triggered by metastatic growth factors in tumor progression. Cellular signalling 25(7):1539–1545

    CAS  PubMed  Google Scholar 

  53. Kuronita T, Eskelinen E-L, Fujita H, Saftig P, Himeno M, Tanaka Y (2002) A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. Journal of cell science 115(21):4117–4131

    CAS  PubMed  Google Scholar 

  54. Johnson IR, Parkinson-Lawrence EJ, Butler LM, Brooks DA (2014) Prostate cell lines as models for biomarker discovery: Performance of current markers and the search for new biomarkers. Prostate 74(5):547–560

    CAS  PubMed  Google Scholar 

  55. Pasini FS, Maistro S, Snitcovsky I, Barbeta LP, Rotea Mangone FR, Lehn CN, Walder F, Carvalho MB, Brentani MM, Federico MH (2012) Four-gene expression model predictive of lymph node metastases in oral squamous cell carcinoma. Acta Oncol 51(1):77–85

    CAS  PubMed  Google Scholar 

  56. Johnson IR, Parkinson-Lawrence EJ, Shandala T, Weigert R, Butler LM, Brooks DA (2014) Altered endosome biogenesis in prostate cancer has biomarker potential. Mol Cancer Res 12(12):1851–1862

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pálfy M, Reményi A, Korcsmáros T (2012) Endosomal crosstalk: meeting points for signaling pathways. Trends in cell biology 22(9):447–456

    PubMed  PubMed Central  Google Scholar 

  58. Glunde K, Guggino SE, Solaiyappan M, Pathak AP, Ichikawa Y, Bhujwalla ZM (2003) Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia (New York NY) 5(6):533

    CAS  Google Scholar 

  59. Ruckhäberle E, Holtrich U, Engels K, Hanker L, Gätje R, Metzler D, Karn T, Kaufmann M, Rody A (2009) Acid ceramidase 1 expression correlates with a better prognosis in ER-positive breast cancer. Climacteric 12(6):502–513

    PubMed  Google Scholar 

  60. Podgorski I, Sloane BF Cathepsin B and its role (s) in cancer progression. In: Biochemical Society Symposia, 2003. Portland Press Limited, pp 263–276

  61. Koblinski JE, Ahram M, Sloane BF (2000) Unraveling the role of proteases in cancer. Clinica chimica acta 291(2):113–135

    CAS  Google Scholar 

  62. Campo E, Munoz J, Miquel R, Palacín A, Cardesa A, Sloane BF, Emmert-Buck MR (1994) Cathepsin B expression in colorectal carcinomas correlates with tumor progression and shortened patient survival. Am J Pathol 145(2):301

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Johnson IR, Parkinson-Lawrence EJ, Keegan H, Spillane CD, Barry-O’Crowley J, Watson WR, Selemidis S, Butler LM, O’Leary JJ, Brooks DA (2015) Endosomal gene expression: a new indicator for prostate cancer patient prognosis? Oncotarget 6(35):37919

    PubMed  PubMed Central  Google Scholar 

  64. Lanzetti L, Di Fiore PP (2008) Endocytosis and cancer: an ‘insider’network with dangerous liaisons. Traffic 9(12):2011–2021

    CAS  PubMed  Google Scholar 

  65. von Zastrow M, Sorkin A (2007) Signaling on the endocytic pathway. Curr Opin Cell Biol 19(4):436–445

    Google Scholar 

  66. Coumailleau F, González-Gaitán M (2008) From endocytosis to tumors through asymmetric cell division of stem cells. Curr Opin Cell Biol 20(4):462–469

    CAS  PubMed  Google Scholar 

  67. Le Borgne R (2006) Regulation of Notch signalling by endocytosis and endosomal sorting. Curr Opin Cell Biol 18(2):213–222

    PubMed  Google Scholar 

  68. Seugnet L, Simpson P, Haenlin M (1997) Requirement for dynamin during notch signaling inDrosophilaNeurogenesis. Developmental biology 192(2):585–598

    CAS  PubMed  Google Scholar 

  69. Wang H, Somers GW, Bashirullah A, Heberlein U, Yu F, Chia W (2006) Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev 20(24):3453–3463

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang H, Ouyang Y, Somers WG, Chia W, Lu B (2007) Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449(7158):96–100

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Betschinger J, Mechtler K, Knoblich JA (2003) The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. nature 422(6929):326–330

    CAS  PubMed  Google Scholar 

  72. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Razi M, Chan EY, Tooze SA (2009) Early endosomes and endosomal coatomer are required for autophagy. J Cell Biol 185(2):305–321

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Panda PK, Mukhopadhyay S, Das DN, Sinha N, Naik PP, Bhutia SK Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. In: Seminars in cell & developmental biology (2015) Elsevier, pp 43–55

  76. Kulikov AV, Luchkina EA, Gogvadze V, Zhivotovsky B (2017) Mitophagy: Link to cancer development and therapy. Biochem Biophys Res Commun 482(3):432–439

    CAS  PubMed  Google Scholar 

  77. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y-S, Ueno I, Sakamoto A, Tong KI (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12(3):213–223

    CAS  PubMed  Google Scholar 

  78. Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF (2016) p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21(1):29

    PubMed  PubMed Central  Google Scholar 

  79. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193(2):275–284

    CAS  PubMed  PubMed Central  Google Scholar 

  80. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nature reviews cancer 12(6):401–410

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fujiwara M, Marusawa H, Wang H, Iwai A, Ikeuchi K, Imai Y, Kataoka A, Nukina N, Takahashi R, Chiba T (2008) Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27(46):6002–6011

    CAS  PubMed  Google Scholar 

  83. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, Janakiraman M, Schultz N, Hanrahan AJ, Pao W (2010) Somatic mutations of the Parkinson’s disease–associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42(1):77

    CAS  PubMed  Google Scholar 

  84. Zhang R, Gu J, Chen J, Ni J, Hung J, Wang Z, Zhang X, Feng J, Ji L (2017) High expression of PINK1 promotes proliferation and chemoresistance of NSCLC. Oncol Rep 37(4):2137–2146

    CAS  PubMed  Google Scholar 

  85. O’flanagan C, Morais V, Wurst W, De Strooper B, O’Neill C (2015) The Parkinson’s gene PINK1 regulates cell cycle progression and promotes cancer-associated phenotypes. Oncogene 34(11):1363–1374

    PubMed  Google Scholar 

  86. Schiefermeier N, Scheffler JM, de Araujo ME, Stasyk T, Yordanov T, Ebner HL, Offterdinger M, Munck S, Hess MW, Wickström SA (2014) The late endosomal p14–MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration. J Cell Biol 205(4):525–540

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bian B, Mongrain S, Cagnol S, Langlois MJ, Boulanger J, Bernatchez G, Carrier JC, Boudreau F, Rivard N (2016) Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Molecular carcinogenesis 55(5):671–687

    CAS  PubMed  Google Scholar 

  88. Kallunki T, Olsen O, Jäättelä M (2013) Cancer-associated lysosomal changes: friends or foes? Oncogene 32(16):1995–2004

    CAS  PubMed  Google Scholar 

  89. Rosa-Ferreira C, Munro S (2011) Arl8 and SKIP act together to link lysosomes to kinesin-1. Developmental cell 21(6):1171–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rafn B, Nielsen CF, Andersen SH, Szyniarowski P, Corcelle-Termeau E, Valo E, Fehrenbacher N, Olsen CJ, Daugaard M, Egebjerg C (2012) ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Molecular cell 45(6):764–776

    CAS  PubMed  Google Scholar 

  91. Kirkegaard T, Jäättelä M (2009) Lysosomal involvement in cell death and cancer. Biochimica et Biophysica Acta (BBA). Molecular Cell Research 1793(4):746–754

    CAS  Google Scholar 

  92. Giatromanolaki A, Kalamida D, Sivridis E, Karagounis IV, Gatter KC, Harris AL, Koukourakis MI (2015) Increased expression of transcription factor EB (TFEB) is associated with autophagy, migratory phenotype and poor prognosis in non-small cell lung cancer. Lung cancer 90(1):98–105

    PubMed  Google Scholar 

  93. Du J, Ren W, Yao F, Wang H, Zhang K, Luo M, Shang Y, O’Connell D, Bei Z, Wang H (2019) YY1 cooperates with TFEB to regulate autophagy and lysosomal biogenesis in melanoma. Molecular carcinogenesis 58(11):2149–2160

    CAS  PubMed  Google Scholar 

  94. Fisher R, Larkin J (2012) Vemurafenib: a new treatment for BRAF-V600 mutated advanced melanoma. Cancer management research 4:243

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Piao S, Amaravadi RK (2016) Targeting the lysosome in cancer. Ann N Y Acad Sci 1371(1):45

    PubMed  Google Scholar 

  96. Repnik U, Stoka V, Turk V, Turk B (2012) Lysosomes and lysosomal cathepsins in cell death. Biochimica et Biophysica Acta (BBA)-Proteins Proteomics 1824(1):22–33

    CAS  Google Scholar 

  97. Bell-McGuinn KM, Garfall AL, Bogyo M, Hanahan D, Joyce JA (2007) Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer research 67(15):7378–7385

    CAS  PubMed  Google Scholar 

  98. Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinheckel T, Peters C, Zeiser R (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature nanotechnology 6(9):594

    CAS  PubMed  Google Scholar 

  99. Nomura T, Katunuma N (2005) Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. The journal of medical investigation 52(1):2):1–9

    PubMed  Google Scholar 

  100. Foekens J, Look M, Bolt-de Vries J, Meijer-van Gelder M, Van Putten W, Klijn J (1999) Cathepsin-D in primary breast cancer: prognostic evaluation involving 2810 patients. British journal of cancer 79(2):300–307

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cherry JP, Mordente JA, Chapman JR, Choudhury MS, Tazaki H, Mallouh C, Konno S (1998) Analysis of cathepsin D forms and their clinical implications in human prostate cancer. The Journal of urology 160(6 Part 1):2223–2228

    CAS  PubMed  Google Scholar 

  102. Sloane BF, Rozhin J, Hatfield JS, Crissman JD, Honn KV (1987) Plasma membrane-associated cysteine proteinases in human and animal tumors. Pathobiology 55(4):209–224

    CAS  Google Scholar 

  103. Denhardt D, Greenberg A, Egan S, Hamilton R, Wright J (1987) Cysteine proteinase cathepsin L expression correlates closely with the metastatic potential of H-ras-transformed murine fibroblasts. Oncogene 2(1):55–59

    CAS  PubMed  Google Scholar 

  104. Qian F, Bajkowski AS, Steiner DF, Chan SJ, Frankfater A (1989) Expression of five cathepsins in murine melanomas of varying metastatic potential and normal tissues. Cancer research 49(17):4870–4875

    CAS  PubMed  Google Scholar 

  105. Glondu M, Liaudet-Coopman E, Derocq D, Platet N, Rochefort H, Garcia M (2002) Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells. Oncogene 21(33):5127–5134

    CAS  PubMed  Google Scholar 

  106. Wolf M, Clark-Lewis I, Buri C, Langen H, Lis M, Mazzucchelli L (2003) Cathepsin D specifically cleaves the chemokines macrophage inflammatory protein-1α, macrophage inflammatory protein-1β, and SLC that are expressed in human breast cancer. Am J Pathol 162(4):1183–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sevenich L, Joyce JA (2014) Pericellular proteolysis in cancer. Genes Dev 28(21):2331–2347

    PubMed  PubMed Central  Google Scholar 

  108. Melander MC, Jürgensen HJ, Madsen DH, Engelholm LH, Behrendt N (2015) The collagen receptor uPARAP/Endo180 in tissue degradation and cancer. Int J Oncol 47(4):1177–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497(7451):633–637

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vasiljeva O, Turk B (2008) Dual contrasting roles of cysteine cathepsins in cancer progression: apoptosis versus tumour invasion. Biochimie 90(2):380–386

    CAS  PubMed  Google Scholar 

  111. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jäättelä M (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153(5):999–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu J, Guo Q, Chen B, Yu Y, Lu H, Li Y-Y (2006) Cathepsin B and its interacting proteins, bikunin and TSRC1, correlate with TNF-induced apoptosis of ovarian cancer cells OV‐90. FEBS Lett 580(1):245–250

    CAS  PubMed  Google Scholar 

  113. Li H, Zhu H, Xu C-j, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501

    CAS  PubMed  Google Scholar 

  114. Nagaraj NS, Vigneswaran N, Zacharias W (2006) Cathepsin B mediates TRAIL-induced apoptosis in oral cancer cells. J Cancer Res Clin Oncol 132(3):171–183

    CAS  PubMed  Google Scholar 

  115. Garnett TO, Filippova M, Duerksen-Hughes PJ (2007) Bid is cleaved upstream of caspase-8 activation during TRAIL-mediated apoptosis in human osteosarcoma cells. Apoptosis 12(7):1299–1315

    CAS  PubMed  Google Scholar 

  116. Droga-Mazovec G, Bojič L, Petelin A, Ivanova S, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B (2008) Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 283(27):19140–19150

    CAS  PubMed  Google Scholar 

  117. Wang M-Y, Chen P-S, Prakash E, Hsu H-C, Huang H-Y, Lin M-T, Chang K-J, Kuo M-L (2009) Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer research 69(8):3482–3491

    CAS  PubMed  Google Scholar 

  118. Konishi T, Sasaki S, Watanabe T, Kitayama J, Nagawa H (2006) Overexpression of hRFI inhibits 5-fluorouracil-induced apoptosis in colorectal cancer cells via activation of NF-κ B and upregulation of BCL-2 and BCL-XL. Oncogene 25(22):3160–3169

    CAS  PubMed  Google Scholar 

  119. Gogineni V, Gupta R, Nalla A, Velpula K, Rao J (2012) uPAR and cathepsin B shRNA impedes TGF-β 1-driven proliferation and invasion of meningioma cells in a XIAP-dependent pathway. Cell death disease 3(12):e439–e439

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Taniguchi M, Ogiso H, Takeuchi T, Kitatani K, Umehara H, Okazaki T (2015) Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis. Cell death disease 6(4):e1717–e1717

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Miyake H, HARA I, Eto H (2004) Serum level of cathepsin B and its density in men with prostate cancer as novel markers of disease progression. Anticancer research 24(4):2573–2578

    PubMed  Google Scholar 

  122. Podgorski I, Linebaugh BE, Sameni M, Jedeszko C, Bhagat S, Cher ML, Sloane BF (2005) Bone microenvironment modulates expression and activity of cathepsin B in prostate cancer. Neoplasia 7(3):207–223

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kumar A, Dhar S, Campanelli G, Butt NA, Schallheim JM, Gomez CR, Levenson AS (2018) MTA 1 drives malignant progression and bone metastasis in prostate cancer. Molecular oncology 12(9):1596–1607

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bien S, Rimmbach C, Neumann H, Niessen J, Reimer E, Ritter CA, Rosskopf D, Cinatl J, Michaelis M, Schroeder H (2010) Doxorubicin-induced cell death requires cathepsin B in HeLa cells. Biochem Pharmacol 80(10):1466–1477

    CAS  PubMed  Google Scholar 

  125. Shibata M, Kanamori S, Isahara K, Ohsawa Y, Konishi A, Kametaka S, Watanabe T, Ebisu S, Ishido K, Kominami E (1998) Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation. Biochem Biophys Res Commun 251(1):199–203

    CAS  PubMed  Google Scholar 

  126. Taguchi Y, Kondo T, Watanabe M, Miyaji M, Umehara H, Kozutsumi Y, Okazaki T (2004) Interleukin-2-induced survival of natural killer (NK) cells involving phosphatidylinositol-3 kinase-dependent reduction of ceramide through acid sphingomyelinase, sphingomyelin synthase, and glucosylceramide synthase. Blood 104(10):3285–3293

    CAS  PubMed  Google Scholar 

  127. Liu F, Li X, Lu C, Bai A, Bielawski J, Bielawska A, Marshall B, Schoenlein PV, Lebedyeva IO, Liu K (2016) Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget 7(51):83907

    PubMed  PubMed Central  Google Scholar 

  128. Paschall AV, Zimmerman MA, Torres CM, Yang D, Chen MR, Li X, Bieberich E, Bai A, Bielawski J, Bielawska A (2014) Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression. BMC Cancer 14(1):1–17

    Google Scholar 

  129. Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Brunner J, Krönke M, Schütze S (1999) Cathepsin D targeted by acid sphingomyelinase‐derived ceramide. EMBO J 18(19):5252–5263

    CAS  PubMed  PubMed Central  Google Scholar 

  130. OuYang L-Y, Wu X-J, Ye S-B, Zhang R-x, Li Z-L, Liao W, Pan Z-Z, Zheng L-M, Zhang X-S, Wang Z (2015) Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. Journal of translational medicine 13(1):47

    PubMed  PubMed Central  Google Scholar 

  131. Dufait I, Van Valckenborgh E, Menu E, Escors D, De Ridder M, Breckpot K (2016) Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget 7(27):42698

    PubMed  PubMed Central  Google Scholar 

  132. Liu T, Xie C, Ma H, Zhang S, Liang Y, Shi L, Yu D, Feng Y, Zhang T, Wu G (2014) Gr-1 + CD11b + cells facilitate Lewis lung cancer recurrence by enhancing neovasculature after local irradiation. Scientific reports 4(1):1–9

    Google Scholar 

Download references

Funding

The author did not receive any funding for this research project.

Author information

Authors and Affiliations

Authors

Contributions

The author, JLJ, acquired all the data and wrote all sections of this literature review. JLJ made all included figures using Microsoft PowerPoint.

Corresponding author

Correspondence to Jonathan L. Jeger.

Ethics declarations

Conflict of interest

The author does not disclose any conflicts of interest.

Ethical approval

No ethics approval was necessary for the compilation of this literature review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeger, J.L. Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development. Mol Biol Rep 47, 9801–9810 (2020). https://doi.org/10.1007/s11033-020-05993-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05993-4

Keywords

Navigation